If you have trouble doing "completing the square repeatedly" as Donald did, there is an algorithm that will find a (rational) matrix $P$ and diagonal $D$ such that your original symmetric matrix $H$ leads to $P^T HP = D.$ Also, $\det P = \pm 1,$ so we also find $Q = P^{-1}$ such that $Q^TDQ = H.$ Finally, by Sylvester's Law of Inertia, the eigenvalues of $H$ have the same $\pm$ signs as the eigenvalues of $D.$
As you are worried about positivity, let me emphasize that
$$ x^T H x = X^T Q^T D Q x = (Qx)^T D (Qx) $$
If we introduce a new vector name, letting $y = Qx,$ then we have written $$x^T H x = y^T D y \; .$$ Furthermore, $Q$ is nonsingular, whenever $x$ is nonzero then $y$ is also nonzero.
Final outcomes of the algorithm:
$$ P^T H P = D $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
- \frac{ 1 }{ 2 } & 1 & 0 & 0 \\
- \frac{ 1 }{ 2 } & 0 & 1 & 0 \\
\frac{ 1 }{ 4 } & - \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
4 & 2 & 2 & 1 \\
2 & 4 & 1 & 2 \\
2 & 1 & 4 & 2 \\
1 & 2 & 2 & 4 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & - \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & \frac{ 1 }{ 4 } \\
0 & 1 & 0 & - \frac{ 1 }{ 2 } \\
0 & 0 & 1 & - \frac{ 1 }{ 2 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
4 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & \frac{ 9 }{ 4 } \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
\frac{ 1 }{ 2 } & 1 & 0 & 0 \\
\frac{ 1 }{ 2 } & 0 & 1 & 0 \\
\frac{ 1 }{ 4 } & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
4 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & \frac{ 9 }{ 4 } \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & \frac{ 1 }{ 4 } \\
0 & 1 & 0 & \frac{ 1 }{ 2 } \\
0 & 0 & 1 & \frac{ 1 }{ 2 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
4 & 2 & 2 & 1 \\
2 & 4 & 1 & 2 \\
2 & 1 & 4 & 2 \\
1 & 2 & 2 & 4 \\
\end{array}
\right)
$$
=================================================================
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = \left(
\begin{array}{rrrr}
4 & 2 & 2 & 1 \\
2 & 4 & 1 & 2 \\
2 & 1 & 4 & 2 \\
1 & 2 & 2 & 4 \\
\end{array}
\right)
$$
$$ D_0 = H $$
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = \left(
\begin{array}{rrrr}
4 & 2 & 2 & 1 \\
2 & 4 & 1 & 2 \\
2 & 1 & 4 & 2 \\
1 & 2 & 2 & 4 \\
\end{array}
\right)
$$
==============================================
$$ E_{1} = \left(
\begin{array}{rrrr}
1 & - \frac{ 1 }{ 2 } & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{1} = \left(
\begin{array}{rrrr}
1 & - \frac{ 1 }{ 2 } & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{1} = \left(
\begin{array}{rrrr}
1 & \frac{ 1 }{ 2 } & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{1} = \left(
\begin{array}{rrrr}
4 & 0 & 2 & 1 \\
0 & 3 & 0 & \frac{ 3 }{ 2 } \\
2 & 0 & 4 & 2 \\
1 & \frac{ 3 }{ 2 } & 2 & 4 \\
\end{array}
\right)
$$
==============================================
$$ E_{2} = \left(
\begin{array}{rrrr}
1 & 0 & - \frac{ 1 }{ 2 } & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{2} = \left(
\begin{array}{rrrr}
1 & - \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{2} = \left(
\begin{array}{rrrr}
1 & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{2} = \left(
\begin{array}{rrrr}
4 & 0 & 0 & 1 \\
0 & 3 & 0 & \frac{ 3 }{ 2 } \\
0 & 0 & 3 & \frac{ 3 }{ 2 } \\
1 & \frac{ 3 }{ 2 } & \frac{ 3 }{ 2 } & 4 \\
\end{array}
\right)
$$
==============================================
$$ E_{3} = \left(
\begin{array}{rrrr}
1 & 0 & 0 & - \frac{ 1 }{ 4 } \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{3} = \left(
\begin{array}{rrrr}
1 & - \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & - \frac{ 1 }{ 4 } \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{3} = \left(
\begin{array}{rrrr}
1 & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & \frac{ 1 }{ 4 } \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{3} = \left(
\begin{array}{rrrr}
4 & 0 & 0 & 0 \\
0 & 3 & 0 & \frac{ 3 }{ 2 } \\
0 & 0 & 3 & \frac{ 3 }{ 2 } \\
0 & \frac{ 3 }{ 2 } & \frac{ 3 }{ 2 } & \frac{ 15 }{ 4 } \\
\end{array}
\right)
$$
==============================================
$$ E_{4} = \left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & - \frac{ 1 }{ 2 } \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{4} = \left(
\begin{array}{rrrr}
1 & - \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & 0 \\
0 & 1 & 0 & - \frac{ 1 }{ 2 } \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{4} = \left(
\begin{array}{rrrr}
1 & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & \frac{ 1 }{ 4 } \\
0 & 1 & 0 & \frac{ 1 }{ 2 } \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{4} = \left(
\begin{array}{rrrr}
4 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & \frac{ 3 }{ 2 } \\
0 & 0 & \frac{ 3 }{ 2 } & 3 \\
\end{array}
\right)
$$
==============================================
$$ E_{5} = \left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & - \frac{ 1 }{ 2 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{5} = \left(
\begin{array}{rrrr}
1 & - \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & \frac{ 1 }{ 4 } \\
0 & 1 & 0 & - \frac{ 1 }{ 2 } \\
0 & 0 & 1 & - \frac{ 1 }{ 2 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{5} = \left(
\begin{array}{rrrr}
1 & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & \frac{ 1 }{ 4 } \\
0 & 1 & 0 & \frac{ 1 }{ 2 } \\
0 & 0 & 1 & \frac{ 1 }{ 2 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{5} = \left(
\begin{array}{rrrr}
4 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & \frac{ 9 }{ 4 } \\
\end{array}
\right)
$$
==============================================
$$ P^T H P = D $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
- \frac{ 1 }{ 2 } & 1 & 0 & 0 \\
- \frac{ 1 }{ 2 } & 0 & 1 & 0 \\
\frac{ 1 }{ 4 } & - \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
4 & 2 & 2 & 1 \\
2 & 4 & 1 & 2 \\
2 & 1 & 4 & 2 \\
1 & 2 & 2 & 4 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & - \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & \frac{ 1 }{ 4 } \\
0 & 1 & 0 & - \frac{ 1 }{ 2 } \\
0 & 0 & 1 & - \frac{ 1 }{ 2 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
4 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & \frac{ 9 }{ 4 } \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
\frac{ 1 }{ 2 } & 1 & 0 & 0 \\
\frac{ 1 }{ 2 } & 0 & 1 & 0 \\
\frac{ 1 }{ 4 } & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
4 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & \frac{ 9 }{ 4 } \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & \frac{ 1 }{ 4 } \\
0 & 1 & 0 & \frac{ 1 }{ 2 } \\
0 & 0 & 1 & \frac{ 1 }{ 2 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
4 & 2 & 2 & 1 \\
2 & 4 & 1 & 2 \\
2 & 1 & 4 & 2 \\
1 & 2 & 2 & 4 \\
\end{array}
\right)
$$