This is for the page #1,page #2, page #3, page #4 of the book by Dickson, titled "Introduction to Theory of Algebraic Equations", in which there is derivation of solution for general cubic equation.
My question is about not being able to get the desired equality (named $D$, later below) stated at the bottom of page #3.
I request geometrical significance of different root pairs $y_1, y_2, y_3$, so as to understand the way to pursue further.
At the bottom of page $3$ it is given that ( Taking as first equality ($A$) ):
$$\sqrt[3]{\frac{-1}{2}q+\sqrt{R}}= \frac{1}{3}(y_1+\omega (\omega y_2+y_3))$$
$$\frac{-1}{2}q+\sqrt{R}= \frac{1}{27}(y_1+\omega (\omega y_2+y_3))^3
= \frac{1}{27}(y_1^3 +(\omega\cdot y_2+y_3)^3 + 3\omega y_1^2(\omega\cdot y_2+y_3) + 3\omega^2\cdot y_1(\omega\cdot y_2+y_3)^2)$$
$$=\frac{1}{27}(y_1^3 +(\omega^3\cdot y_2^3 +y_3^3 +3\omega^2\cdot y_2^2y_3+3\omega\cdot y_2y_3^2)+3\omega^2 y_1^2y_2+3\omega y_1^2y_3+3\omega^2 y_1(\omega^2\cdot y_2^2+y_3^2+2\omega\cdot y_2y_3))$$
$$=\frac{1}{27}(y_1^3 +y_2^3 +y_3^3+6y_1y_2y_3+3\omega^2\cdot y_2^2y_3+3\omega\cdot y_2y_3^2+3\omega^2 y_1^2y_2+ 3\omega y_1^2y_3 + 3\omega y_1y_2^2+3\omega^2 y_1y_3^2) $$
At the bottom of page $3$ it is next given that ( Taking as second equality ($B$) ):
$$\sqrt[3]{\frac{-1}{2}q-\sqrt{R}}= \frac{1}{3}(y_1+\omega(\omega y_3+y_2))$$
$$\frac{-1}{2}q-\sqrt{R}= \frac{1}{27}(y_1+\omega(\omega y_3+y_2))^3
= \frac{1}{27}(y_1^3 +(\omega\cdot y_3+y_2)^3 + 3\omega y_1^2(\omega\cdot y_3+y_2) + 3\omega^2\cdot y_1(\omega\cdot y_3+y_2)^2)$$
$$=\frac{1}{27}(y_1^3 +(\omega^3\cdot y_3^3 +y_2^3 +3\omega^2\cdot y_3^2y_2+3\omega\cdot y_3y_2^2)+3\omega^2y_1^2y_3+3\omega y_1^2y_2+3\omega^2 y_1(\omega^2\cdot y_3^2+y_2^2+2\omega\cdot y_3y_2))$$
$$=\frac{1}{27}(y_1^3 +y_3^3 +y_2^3+6y_1y_2y_3+3w^2\cdot y_3^2y_2+3\omega\cdot y_3y_2^2+3\omega^2 y_1^2y_3+ 3\omega y_1^2y_2 + 3\omega y_1y_3^2+3\omega^2 y_1y_2^2)$$
At the bottom of page $3$, further the difference of the above equalities is taken up ( Taking the difference as third equality ($C$) ):
$$2\sqrt{R}=\frac{1}{27}((3\omega^2\cdot y_2^2y_3+3\omega\cdot y_2y_3^2+3\omega^2 y_1^2y_2+ 3\omega y_1^2y_3 + 3\omega y_1y_2^2+3\omega^2 y_1y_3^2) -(3\omega^2\cdot y_3^2y_2+3\omega\cdot y_3y_2^2+3\omega^2 y_1^2y_3+ 3\omega y_1^2y_2 + 3\omega y_1y_3^2+3\omega^2 y_1y_2^2))$$
$$\sqrt{R}=\frac{1}{54}(3\omega^2\cdot y_2y_3(y_2-y_3)+3\omega\cdot y_2y_3(y_3-y_2)+3\omega^2 y_1y_2(y_1-y_2)+ 3\omega y_1y_3(y_1-y_3) + 3\omega y_1y_2(y_2-y_1)+3\omega^2 y_1y_3(y_3-y_1))$$
$$=\frac{1}{54}(3\omega(\omega -1)y_1y_2(y_1-y_2)+3\omega (\omega -1)y_2y_3(y_2-y_3)+3\omega(\omega -1)y_1y_3(y_3-y_1))$$
$$=\frac{1}{54}(3(\omega^2-\omega)(y_1y_2(y_1-y_2)+y_2y_3(y_2-y_3)+y_1y_3(y_3-y_1)))$$
$$=\frac{(\omega^2-\omega)}{18}(y_1y_2(y_1-y_2)+y_2y_3(y_2-y_3)+y_1y_3(y_3-y_1))$$
$$=\frac{\sqrt{-3}}{18}(y_1y_2(y_1-y_2)+y_2y_3(y_2-y_3)+y_1y_3(y_3-y_1))$$
How to show the last equality ($C$) equal to the given one below one (let equality $D$) is not apparent to me
$$\sqrt{R}= \frac{\sqrt{-3}}{18}(y_1-y_2)(y_2-y_3)(y_3-y_1)$$
All I could attempt is to take the values of $y_1, y_2,y_3$ and find the products : $y_1y_2, y_2y_3, y_3y_1$. $$y_1= \sqrt[3]{-\frac{q}{2}+\sqrt{R}} + \sqrt[3]{-\frac{q}{2}-\sqrt{R}}$$ $$y_2= \omega \sqrt[3]{-\frac{q}{2}+\sqrt{R}} + \omega^2\sqrt[3]{-\frac{q}{2}-\sqrt{R}}$$ $$y_3= \omega^2 \sqrt[3]{-\frac{q}{2}+\sqrt{R}} + \omega\sqrt[3]{-\frac{q}{2}-\sqrt{R}}$$
$$y_1y_2= (\sqrt[3]{-\frac{q}{2}+\sqrt{R}} + \sqrt[3]{-\frac{q}{2}-\sqrt{R}}\,\,\,)\cdot (\omega \sqrt[3]{-\frac{q}{2}+\sqrt{R}} + \omega^2\sqrt[3]{-\frac{q}{2}-\sqrt{R}}\,\,\,)$$ $$=\omega \,\,\sqrt[2/3]{-\frac{q}{2}+\sqrt{R}}+\omega^2 \sqrt[2/3]{-\frac{q}{2}-\sqrt{R}}+(\omega+\omega^2)(\sqrt[3]{-\frac{q}{2}+\sqrt{R}}\,\,\,\sqrt[3]{-\frac{q}{2}-\sqrt{R}}\,\,\,)$$
$$y_1y_3= (\sqrt[3]{-\frac{q}{2}+\sqrt{R}} + \sqrt[3]{-\frac{q}{2}-\sqrt{R}}\,\,\,)\cdot (\omega^2 \sqrt[3]{-\frac{q}{2}+\sqrt{R}} + \omega\,\,\sqrt[3]{-\frac{q}{2}-\sqrt{R}}\,\,\,)$$ $$=\omega^2 \sqrt[2/3]{-\frac{q}{2}+\sqrt{R}}+\omega\,\, \sqrt[2/3]{-\frac{q}{2}-\sqrt{R}}+(\omega+\omega^2)(\sqrt[3]{-\frac{q}{2}+\sqrt{R}}\,\,\,\sqrt[3]{-\frac{q}{2}-\sqrt{R}}\,\,\,)$$
$$y_3y_2= (\omega^2 \sqrt[3]{-\frac{q}{2}+\sqrt{R}} + \omega\,\,\sqrt[3]{-\frac{q}{2}-\sqrt{R}}\,\,\,)\cdot (\omega \sqrt[3]{-\frac{q}{2}+\sqrt{R}} + \omega^2\sqrt[3]{-\frac{q}{2}-\sqrt{R}}\,\,\,)$$ $$=\sqrt[2/3]{-\frac{q}{2}+\sqrt{R}}+\sqrt[2/3]{-\frac{q}{2}-\sqrt{R}}+(\omega+\omega^2)(\sqrt[3]{-\frac{q}{2}+\sqrt{R}}\,\,\,\sqrt[3]{-\frac{q}{2}-\sqrt{R}}\,\,\,)$$ $$=\omega^3 \sqrt[2/3]{-\frac{q}{2}+\sqrt{R}}+ \omega^3 \sqrt[2/3]{-\frac{q}{2}-\sqrt{R}}+(\omega+\omega^2)(\sqrt[3]{-\frac{q}{2}+\sqrt{R}}\,\,\,\sqrt[3]{-\frac{q}{2}-\sqrt{R}}\,\,\,)$$