This is in continuance to my earlier post : Deriving expression for general cubic equation solution. Also, the links are repeated for the first four pages of the book by Dickson, titled "Introduction to Theory of Algebraic Equations" are given as : page #1,$\,$page #2,$\,$ page #3, $\,$page #4
On page #4, the second question asks to show :
The cubic ($2$), i.e. the reduced cubic equation: $y^3+py+q=0$, with $$p = c_2-\frac{1}{3}c_1^2,\,\,\,\,\,\,\,\,\,\, q= -c_3+\frac{1}{3}c_1c_2 - \frac{2}{27}c_1^3$$ $$R = \frac{1}{4}q^2 + \frac{1}{27}p^3=\frac{1}{4}(-c_3+(\frac{1}{3}c_1c_2 - \frac{2}{27}c_1^3))^2 + \frac{1}{27}(c_2-\frac{1}{3}c_1^2)^3 = \frac{1}{4}(c_3^2+ (\frac{1}{9}c_1^2c_2^2 + \frac{4}{27^2}c_1^6 - \frac{4}{81}c_1^4c_2)-\frac{2}{3}c_1c_2c_3+\frac{4}{27}c_1^3c_3)+\frac{1}{27}(c_2^3+\frac{1}{27}c_1^6-c_2^2c_1^2+\frac{1}{3}c_2c_1^4) $$
$$=\frac{1}{4}c_3^2 + \frac{1}{36}c_1^2c_2^2+ \frac{1}{27^2}c_1^6-\frac{1}{81}c_1^4c_2 -\frac{1}{6}c_1c_2c_3 +\frac{1}{27}c_1^3c_3+\frac{1}{27}c_2^3+\frac{1}{27^2}c_1^6-\frac{1}{27}c_2^2c_1^2 +\frac{1}{81}c_2c_1^4$$
$$=\frac{1}{4}c_3^2+\frac{1}{36}c_1^2c_2^2+\frac{2}{27^2}c_1^6-\frac{1}{6}c_1c_2c_3+\frac{1}{27}c_1^3c_3+\frac{1}{27}c_2^3-\frac{1}{27}c_2^2c_1^3$$
has :
(i) one real root and two imaginary roots if $R\gt 0$,
(i) three real root, two of which are equal if $R= 0$,
(i) three real & distinct roots (irreducible case) if $R\lt 0$