0

I'm new here, I would like some help in solving this particular Quadratic form with matrices using the method described:

Quadratic forms - Completing squares

$$A = \begin{bmatrix} 1 & 1 & 2\\ 1 & -1 & 1\\ 2 & 1 & 3\end{bmatrix}$$

I've managed to solve the example given on the link provided and I understand why things are as they are pretty well without much trouble but I can't seem to solve my own problem, why? What I mostly want to know is how to find Q (Coefficient matrix)

  • A good question should be self-contained. For example, you say that you can follow the example given if we follow the link. Can you please summarize your solution to that example, then try to explain where you are getting stuck in your own example? It would also help if you provided us with some basic definitions (e.g. what is a "coefficient matrix"?). – Xander Henderson Apr 07 '18 at 00:38

1 Answers1

1

I show the algorithm below. It is helpful in some ways. However, it need not give the "simplest" expression; here we could also write $$ (x+y+2z)^2 - (y+z)^2 - y^2 = x^2 - y^2 + 3 z^2 + 2 yz + 4 zx + 2xy $$

The method used to go in this direction is usually called repeated "completing the square," and hardly requires matrices to do by hand.

$$ Q^T D Q = H $$ $$\left( \begin{array}{rrr} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 1 & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ \end{array} \right) = \left( \begin{array}{rrr} 1 & 1 & 2 \\ 1 & - 1 & 1 \\ 2 & 1 & 3 \\ \end{array} \right) $$

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

As there are just three elementary matrices $E_j,$ we end up with $$ P = E_1 E_2 E_3 $$ and $$ P^{-1} = Q = E_3^{-1} E_2^{-1} E_1^{-1} $$

Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
$$ H = \left( \begin{array}{rrr} 1 & 1 & 2 \\ 1 & - 1 & 1 \\ 2 & 1 & 3 \\ \end{array} \right) $$ $$ D_0 = H $$

$$ E_j^T D_{j-1} E_j = D_j $$ $$ P_{j-1} E_j = P_j $$ $$ E_j^{-1} Q_{j-1} = Q_j $$ $$ P_j Q_j = Q_j P_j = I $$ $$ P_j^T H P_j = D_j $$ $$ Q_j^T D_j Q_j = H $$

$$ H = \left( \begin{array}{rrr} 1 & 1 & 2 \\ 1 & - 1 & 1 \\ 2 & 1 & 3 \\ \end{array} \right) $$

==============================================

$$ E_{1} = \left( \begin{array}{rrr} 1 & - 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) $$ $$ P_{1} = \left( \begin{array}{rrr} 1 & - 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; Q_{1} = \left( \begin{array}{rrr} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; D_{1} = \left( \begin{array}{rrr} 1 & 0 & 2 \\ 0 & - 2 & - 1 \\ 2 & - 1 & 3 \\ \end{array} \right) $$

==============================================

$$ E_{2} = \left( \begin{array}{rrr} 1 & 0 & - 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) $$ $$ P_{2} = \left( \begin{array}{rrr} 1 & - 1 & - 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; Q_{2} = \left( \begin{array}{rrr} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; D_{2} = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & - 2 & - 1 \\ 0 & - 1 & - 1 \\ \end{array} \right) $$

==============================================

$$ E_{3} = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & - \frac{ 1 }{ 2 } \\ 0 & 0 & 1 \\ \end{array} \right) $$ $$ P_{3} = \left( \begin{array}{rrr} 1 & - 1 & - \frac{ 3 }{ 2 } \\ 0 & 1 & - \frac{ 1 }{ 2 } \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; Q_{3} = \left( \begin{array}{rrr} 1 & 1 & 2 \\ 0 & 1 & \frac{ 1 }{ 2 } \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; D_{3} = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & - 2 & 0 \\ 0 & 0 & - \frac{ 1 }{ 2 } \\ \end{array} \right) $$

==============================================

$$ P^T H P = D $$ $$\left( \begin{array}{rrr} 1 & 0 & 0 \\ - 1 & 1 & 0 \\ - \frac{ 3 }{ 2 } & - \frac{ 1 }{ 2 } & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 1 & 2 \\ 1 & - 1 & 1 \\ 2 & 1 & 3 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & - 1 & - \frac{ 3 }{ 2 } \\ 0 & 1 & - \frac{ 1 }{ 2 } \\ 0 & 0 & 1 \\ \end{array} \right) = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & - 2 & 0 \\ 0 & 0 & - \frac{ 1 }{ 2 } \\ \end{array} \right) $$ $$ Q^T D Q = H $$ $$\left( \begin{array}{rrr} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & \frac{ 1 }{ 2 } & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & - 2 & 0 \\ 0 & 0 & - \frac{ 1 }{ 2 } \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 1 & 2 \\ 0 & 1 & \frac{ 1 }{ 2 } \\ 0 & 0 & 1 \\ \end{array} \right) = \left( \begin{array}{rrr} 1 & 1 & 2 \\ 1 & - 1 & 1 \\ 2 & 1 & 3 \\ \end{array} \right) $$

..............

Will Jagy
  • 139,541
  • Thanks a lot for the quick reponse, very much appreciated, apparently I had been mixing up the formulas to PDP and QHQ for some reason... – Math-Templar Apr 06 '18 at 18:08
  • @Math-Templar I added a different expression at the beginning. It generally gives better expressions if it works, fewer fractions, but does require some thought. – Will Jagy Apr 06 '18 at 18:13
  • Thanks, Yeah I did do this version myself too, although like I've said, I confused the formulas for some reason :) – Math-Templar Apr 06 '18 at 18:19