method discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
Note that the matrix $H$ has characteristic polynomial $x^3 - 10x^2 + 6x + 12$ and (irrational) eigenvalues
$$-0.8119658377479428698001875737, \; \; \; \; 1.605232411407321548171091093, \; \; \;9.206733426340621321629096481 $$
$$ H = \left(
\begin{array}{rrr}
1 & 3 & - 2 \\
3 & 7 & - 2 \\
- 2 & - 2 & 2 \\
\end{array}
\right)
$$
$$ D_0 = H $$
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = \left(
\begin{array}{rrr}
1 & 3 & - 2 \\
3 & 7 & - 2 \\
- 2 & - 2 & 2 \\
\end{array}
\right)
$$
==============================================
$$ E_{1} = \left(
\begin{array}{rrr}
1 & - 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{1} = \left(
\begin{array}{rrr}
1 & - 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{1} = \left(
\begin{array}{rrr}
1 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{1} = \left(
\begin{array}{rrr}
1 & 0 & - 2 \\
0 & - 2 & 4 \\
- 2 & 4 & 2 \\
\end{array}
\right)
$$
==============================================
$$ E_{2} = \left(
\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{2} = \left(
\begin{array}{rrr}
1 & - 3 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{2} = \left(
\begin{array}{rrr}
1 & 3 & - 2 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{2} = \left(
\begin{array}{rrr}
1 & 0 & 0 \\
0 & - 2 & 4 \\
0 & 4 & - 2 \\
\end{array}
\right)
$$
==============================================
$$ E_{3} = \left(
\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{3} = \left(
\begin{array}{rrr}
1 & - 3 & - 4 \\
0 & 1 & 2 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{3} = \left(
\begin{array}{rrr}
1 & 3 & - 2 \\
0 & 1 & - 2 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{3} = \left(
\begin{array}{rrr}
1 & 0 & 0 \\
0 & - 2 & 0 \\
0 & 0 & 6 \\
\end{array}
\right)
$$
==============================================
$$ P^T H P = D $$
$$\left(
\begin{array}{rrr}
1 & 0 & 0 \\
- 3 & 1 & 0 \\
- 4 & 2 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & 3 & - 2 \\
3 & 7 & - 2 \\
- 2 & - 2 & 2 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & - 3 & - 4 \\
0 & 1 & 2 \\
0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrr}
1 & 0 & 0 \\
0 & - 2 & 0 \\
0 & 0 & 6 \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrr}
1 & 0 & 0 \\
3 & 1 & 0 \\
- 2 & - 2 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & 0 & 0 \\
0 & - 2 & 0 \\
0 & 0 & 6 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & 3 & - 2 \\
0 & 1 & - 2 \\
0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrr}
1 & 3 & - 2 \\
3 & 7 & - 2 \\
- 2 & - 2 & 2 \\
\end{array}
\right)
$$

$$ P^T H P = D $$
$$ Q^T D Q = H $$
$$ H = \left(
\begin{array}{rrr}
1 & 3 & - 2 \\
3 & 7 & - 2 \\
- 2 & - 2 & 2 \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrr}
1 & - 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrr}
1 & - 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrr}
1 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrr}
1 & 0 & - 2 \\
0 & - 2 & 4 \\
- 2 & 4 & 2 \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrr}
1 & - 3 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrr}
1 & 3 & - 2 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrr}
1 & 0 & 0 \\
0 & - 2 & 4 \\
0 & 4 & - 2 \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrr}
1 & - 3 & - 4 \\
0 & 1 & 2 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrr}
1 & 3 & - 2 \\
0 & 1 & - 2 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrr}
1 & 0 & 0 \\
0 & - 2 & 0 \\
0 & 0 & 6 \\
\end{array}
\right)
$$
==============================================
$$ P^T H P = D $$
$$\left(
\begin{array}{rrr}
1 & 0 & 0 \\
- 3 & 1 & 0 \\
- 4 & 2 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & 3 & - 2 \\
3 & 7 & - 2 \\
- 2 & - 2 & 2 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & - 3 & - 4 \\
0 & 1 & 2 \\
0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrr}
1 & 0 & 0 \\
0 & - 2 & 0 \\
0 & 0 & 6 \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrr}
1 & 0 & 0 \\
3 & 1 & 0 \\
- 2 & - 2 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & 0 & 0 \\
0 & - 2 & 0 \\
0 & 0 & 6 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & 3 & - 2 \\
0 & 1 & - 2 \\
0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrr}
1 & 3 & - 2 \\
3 & 7 & - 2 \\
- 2 & - 2 & 2 \\
\end{array}
\right)
$$