$\def\e{\mathrm{e}}$For $n \in \mathbb{N}_+$, denote$$
S_n = \sum_{k = 0}^n \binom{n}{k} (1 + \e^{-(k + 1)})^{n + 1},\ T_n = \sum_{k = 0}^n \binom{n}{k} (1 + \e^{-k})^{n + 1}.
$$
First,\begin{align*}
S_n &= \sum_{k = 0}^n \binom{n}{k} (1 + \e^{-(k + 1)})^{n + 1} = \sum_{k = 0}^n \binom{n}{k} \sum_{j = 0}^{n + 1} \binom{n + 1}{j} \e^{-(k + 1)j}\\
&= \sum_{k = 0}^n \sum_{j = 0}^{n + 1} \binom{n}{k} \binom{n + 1}{j} \e^{-(k + 1)j} = \sum_{k = 0}^n \binom{n}{k} + \sum_{k = 0}^n \sum_{j = 1}^{n + 1} \binom{n}{k} \binom{n + 1}{j} \e^{-(k + 1)j}\\
&= 2^n + \sum_{k = 0}^n \sum_{j = 0}^n \binom{n}{k} \binom{n + 1}{j + 1} \e^{-(k + 1)(j + 1)}, \tag{1}
\end{align*}
thus $S_n \geqslant 2^n$. Note that$$
(k + 1)(j + 1) \geqslant k + j + 1 \Longleftrightarrow kj \geqslant 0,
$$
thus from (1) there is\begin{align*}
S_n &\leqslant 2^n + \sum_{k = 0}^n \sum_{j = 0}^n \binom{n}{k} \binom{n + 1}{j + 1} \e^{-(k + j + 1)}\\
&= 2^n + \e^{-1} \sum_{k = 0}^n \sum_{j = 0}^n \binom{n}{k} \e^{-k} \binom{n + 1}{j + 1} \e^{-j}\\
&= 2^n + \e^{-1} \left( \sum_{k = 0}^n \binom{n}{k} \e^{-k} \right)\left( \sum_{j = 0}^n \binom{n + 1}{j + 1} \e^{-j} \right)\\
&\leqslant 2^n + \e^{-1} (1 + \e^{-1})^n (1 + \e^{-1})^{n + 1}\\
&= 2^n + \e^{-1} (1 + \e^{-1})^{2n + 1}.
\end{align*}
Therefore,$$
1 \leqslant \frac{S_n}{2^n} \leqslant 1 + \e^{-1} (1 + \e^{-1}) \left( \frac{1}{2} (1 + \e^{-1})^2 \right)^n.
$$
Note that $\dfrac{1}{2} (1 + \e^{-1})^2 < 1$, thus $S_n \sim 2^n$ $(n \to \infty)$.
Next,\begin{align*}
T_n &= \sum_{k = 0}^n \binom{n}{k} (1 + \e^{-k})^{n + 1} = \sum_{k = 0}^n \binom{n}{k} \sum_{j = 0}^{n + 1} \binom{n + 1}{j} \e^{-kj}\\
&= \sum_{k = 0}^n \sum_{j = 0}^{n + 1} \binom{n}{k} \binom{n + 1}{j} \e^{-kj}\\
&= \sum_{k = 0}^n \binom{n}{k} + \sum_{j = 0}^{n + 1} \binom{n + 1}{j} - 1 + \sum_{k = 1}^n \sum_{j = 1}^{n + 1} \binom{n}{k} \binom{n + 1}{j} \e^{-kj}\\
&= 2^n + 2^{n + 1} - 1 + \sum_{k = 1}^n \sum_{j = 1}^{n + 1} \binom{n}{k} \binom{n + 1}{j} \e^{-kj}\\
&= 3 × 2^n - 1 + \sum_{k = 0}^{n - 1} \sum_{j = 0}^n \binom{n}{k + 1} \binom{n + 1}{j + 1} \e^{-(k + 1)(j + 1)}, \tag{2}
\end{align*}
thus $T_n \geqslant 3 × 2^n - 1$. Also, analogously, from (2) there is\begin{align*}
T_n &\leqslant 3 × 2^n + \sum_{k = 0}^{n - 1} \sum_{j = 0}^n \binom{n}{k + 1} \binom{n + 1}{j + 1} \e^{-(k + j + 1)}\\
&= 3 × 2^n + \e \left( \sum_{k = 0}^{n - 1} \binom{n}{k + 1} \e^{-(k + 1)} \right)\left( \sum_{j = 0}^n \binom{n + 1}{j + 1} \e^{-(j + 1)} \right)\\
&\leqslant 3 × 2^n + \e (1 + \e^{-1} )^n (1 + \e^{-1})^{n + 1},
\end{align*}
which analogously implies that $T_n \sim 3 × 2^n$ $(n \to \infty)$.
Therefore,$$
\lim_{n \to \infty} \frac{\displaystyle\sum_{k = 0}^n \binom{n}{k} (1 + \e^{-(k + 1)})^{n + 1}}{\displaystyle\sum_{k = 0}^n \binom{n}{k} (1 + \e^{-k})^{n + 1}} = \lim_{n \to \infty} \frac{S_n}{T_n} = \lim_{n \to \infty} \frac{2^n}{3 × 2^n} = \frac{1}{3}.
$$