For $n\in\Bbb N$, define $$S_n=\sum_{p=0}^n\sum_{q=0}^n\binom{n}{p}\binom{n}{q} e^{-pq}$$ I want to prove that $$\lim_{n\to\infty}\frac{S_n}{2^{n+1}}=1$$
My attempts:
For $n\in\Bbb N^*$, $$S_n=2^{n+1}-1+\sum_{p=1}^n\sum_{q=1}^n\binom{n}{p}\binom{n}{q} e^{-pq}$$
The role of $e$ is not important. In fact, we can replace $e$ with any constant $x\ge1$.
I tried to use some similar methods (such as CLT) of the limit below but failed. $$\lim_{n\to\infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!}=\frac12$$
Summation of $q$ gives $$S_n=\sum_{p=0}^n\binom{n}{p}(1+e^{-p})^{n}$$
Some calculation results: $$\frac{S_{10}}{2^{11}}\simeq1.23\qquad\frac{S_{20}}{2^{21}}\simeq1.01\qquad\frac{S_{30}}{2^{31}}\simeq1.00035$$
The answer of the link in my comment is satisfied. However, it will also be appreciated if there are any other ideas.