According to this Wikipedia article, the expansion for $f(x\pm h)$ is:
$$f(x \pm h) = f(x) \pm hf'(x) + \frac{h^2}{2}f''(x) \pm \frac{h^3}{6}f^{(3)}(x) + O(h^4)$$
I'm not understanding how you are left with $f(x)$ terms on the right hand side.
I tried working out, for example, the Taylor expansion for $f(x + h)$ (using $(x+h)$ as $x_0$) and got this:
$$ f(x + h) = f(x+h) + f'(x + h)(x-(x+h)) + \frac{f''(x+h)}{2!}(x-(x+h))^2 + \frac{f'''(x+h)}{3!} (x - (x + h))^3 + \cdots $$
$$ = f(x + h) - hf'(x+h) + \frac{h^2}{2!}f''(x + h) - \frac{h^3}{3!} f'''(x+h) + \cdots$$
Am I doing this correctly?