Firstly, my $\LaTeX$, Mathematics and English knowledge is very limited. It is extremely difficult for me to ask this question. Now I am improving myself.I hope you understand me...
Look at this function: $$f(n) = \begin{cases} n/2 &\text{if } n \equiv 0 \pmod 2 \\ n+1 & \text{if } n\equiv 1 \pmod 2.\end{cases}$$
We know that for any positive number, there is a number $\text{“}k\text{''}$, which that $f^k(n)=1$
For function $f(n)$ go backward from number $1$.
Let step number is $k$ $$[2^{\sum_{z=1}^{k-1} m_z}-2^{\sum_{z=2}^{k-1} m_z}-2^{\sum_{z=3}^{k-1} m_z}-\cdots-1]\stackrel{k\to \infty}{\longleftarrow}\mathbf{\cdots} \stackrel{k=5}{\longleftarrow} \mathbf{[2^{m_4+m_3+m_2+m_1}-2^{m_4+m_3+m_2}-2^{m_4+m_3}-2^{m_4}-1]}\stackrel{k=4}{\longleftarrow} \mathbf{[{2^{m_1+m_3+m_2}-2^{m_2+m_3}-2^{m_3}-1}]}\stackrel{k=3}{\longleftarrow} \mathbf{[{2^{m_1+m_2}-2^{m_2}-1}]}\stackrel{k=2}{\longleftarrow} \mathbf{[{2^{m_1}-1}]}\stackrel{k=1}{\longleftarrow} \mathbf1$$
Then, $2^{\sum_{z=1}^{k-1} m_z}-2^{\sum_{z=2}^{k-1} m_z}-2^{\sum_{z=3}^{k-1} m_z}-\cdots-1=F_{10}(m_1,m_2,\ldots,m_{k-1})$ and $2^{\sum_{z=1}^{k-i} m_z}-2^{\sum_{z=2}^{k-i} m_z}-2^{\sum_{z=3}^{k-i} m_z}-\cdots-1 =F_{ij}(m_1,m_2,\ldots,m_{k-i})$
Let, for $\max [F_{10}]$ , we can write
$m_1=m_2=m_3=\cdots=m_{k-1}=p \Rightarrow \max[F_{10}]=2^{p(k-1)}-2^{p(k-2)}-2^{p(k-3)}-\cdots-1$ and for each $F_{ij}$ must be $\max [F_{ij}]<\max [F_{10}]$.
Then, Let's write all possible sums:
$$\sum_{m_{k-1}=1}^p \sum_{m_{k-2}=1}^p\cdots\sum_{m_{1}=1}^p F_{10}(m_1,m_2,\ldots,m_{k-1})+\sum \sum\cdots\sum F_{11}(m_1,m_2,\ldots,m_{k-1})+\sum\sum\cdots\sum F_{12}(m_1,m_2,\ldots,m_{k-1})+\sum\sum\cdots\sum F_{13}(m_1,m_2,\ldots,m_{k-1})+\cdots+\sum\sum\cdots\sum F_{20}(m_1,m_2,\ldots,m_{k-2})+\sum\sum\cdots\sum F_{21}(m_1,m_2,\ldots,m_{k-2})+\sum\sum\cdots\sum F_{22}(m_1,m_2,\ldots,m_{k-2})+\sum\sum\cdots\sum F_{23}(m_1,m_2,\ldots,m_{k-2})+\cdots+\sum\sum\cdots\sum F_{30}(m_1,m_2,\ldots,m_{k-3})+\sum\sum\cdots\sum F_{31}(m_1,m_2,\ldots,m_{k-3})+\sum\sum\cdots\sum F_{32}(m_1,m_2,\ldots,m_{k-3}) +\sum\sum\cdots\sum F_{33}(m_1,m_2,\ldots,m_{k-3}) + \dots + \cdots + \sum_{m_1=1}^{[log_2{(2^{p(k-1)}-2^{p(k-2)}-2^{p(k-3)}-\cdots-1+1)}]} (2^{m_1}-1) = M$$
What is $\sum\sum\cdots\sum F_{ij}(m_1,m_2,\ldots,m_{k-i})$ ?
Example: Let,$\sum\sum\cdots\sum F_{11}(m_1,m_2,\ldots,m_{k-1}) = \sum_{m_1=1}^1 \sum_{m_2=1}^1 \cdots \sum_{m_{k-2}=1}^1 \sum_{m_{k-1}=p+1}^{p+1}F_{11}(m_1,m_2,\ldots,m_{k-1})$
which that, $\max [F_{10}]>\max [F_{11}]$
İf $k\to \infty$ and $p\to \infty$ I think $\text{“}M\text{''}$ must be sum of all odd numbers, which that the last number equal to $2^{p(k-1)}-2^{p(k-2)}-2^{p(k-3)}-\cdots-1.$
The Question: Is this limit equal to $1$ ?
$$\lim_{k \to \infty}\left[ \lim_{p \to \infty} \frac{M}{1+3+5+7+\cdots+ [2^{p(k-1)} - 2^{p(k-2)}-2^{p(k-3)}-\cdots-1]}\right]=1$$