Inspired by the question Is $\lim_{k \to \infty}\left[ \lim_{p \to \infty} \frac{M}{1+3+5+7+\cdots+ [2^{p(k-1)}-2^{p(k-2)}-2^{p(k-3)}-\cdots-1]}\right]=1$? which that, I asked before. I researched the pdf books before asking this question at MSE. When I could not find an answer anywhere, I decided to ask. Even if the question is absurd.
For this function: $$f(n) = \begin{cases} n/2 &\text{if } n \equiv 0 \pmod{2}\\ n+1 & \text{if } n\equiv 1 \pmod 2. \end{cases}$$
We know that for any positive number, there is such a number $\text{“} k \text{''}$, which that $f^k(n)=1$
For function $f(n)$ go "backward" from number $1$ for only odd numbers sequence:
Let step number is $k$ $$[2^{\sum_{z=1}^k m_z}-2^{\sum_{z=2}^k m_z}-2^{\sum_{z=3}^k m_z}-\cdots-1]\stackrel{k\to \infty}{\longleftarrow}\mathbf{\cdots} \stackrel{k=5}{\longleftarrow} \mathbf{[2^{m_4+m_3+m_2+m_1}-2^{m_4+m_3+m_2}-2^{m_4+m_3}-2^{m_4}-1]}\stackrel{k=4}{\longleftarrow} \mathbf{[{2^{m_1+m_3+m_2}-2^{m_2+m_3}-2^{m_3}-1}]}\stackrel{k=3}{\longleftarrow} \mathbf{[{2^{m_1+m_2}-2^{m_2}-1}]}\stackrel{k=2}{\longleftarrow} \mathbf{[{2^{m_1}-1}]}\stackrel{k=1}{\longleftarrow} \mathbf1$$
I used this formula:
$$φ({m_1,m_2,\ldots,m_k})=φ({m_1,m_2,\ldots,m_{k-1}})×2^{m_k}-1$$
and we can find general distrubition function: $φ({m_1,m_2,\ldots,m_k})$
$$φ({m_1,m_2,\ldots,m_{k}})=[2^{\sum_{z=1}^k m_z}-2^{\sum_{z=2}^k m_z} - 2^{\sum_{z=3}^k m_z}-\ldots-1]$$
$$f^k(φ(m_1,m_2,\ldots,m_k))=f^k([2^{\sum_{z=1}^k m_z}-2^{\sum_{z=2}^k m_z} - 2^{\sum_{z=3}^k m_z}-\cdots-1])=1$$
Example:
$$f^2(φ(m_1,m_2))=f^2({2^{m_1+m_2}-2^{m_2}-1})=\frac{\frac{{2^{m_1+m_2}-2^{m_2}-1} + 1}{2^{m_2}}+1}{2^{m_1}}=1$$
Then, look at this function:
$$g(n) = \begin{cases} n/2 &\text{if } n \equiv 0 \pmod 2 \\ 3n+1 & \text{if } n \equiv 1 \pmod 2. \end{cases}$$
For function $g(n)$ go "backward" from number $1$ for only odd numbers sequence, again:
$$ψ(m_1,m_2,\ldots,m_k)\stackrel{k\to \infty}{\longleftarrow}\mathbf{\cdots} \stackrel{k=2}{\longleftarrow} \mathbf{[\frac{4^{m_1}-1}{3}]}\stackrel{k=1}{\longleftarrow} \mathbf1$$
$$ψ(m_1)=\frac{4^{m_1}-1}{3}$$
Because, $g^1(ψ(m_1))=1$
The problem starts here. I found $ψ(m_1)$ for $k=1$. But, I dont know, how can I find $ψ(m_1,m_2)$ or $ψ(m_1,m_2,m_3)$.I can not continue here.
Anyway.My question's "meat" is this: Is it possible to make a general formula by going back from $1$?
How can we find and is it possible $ψ(m_1,m_2),ψ(m_1,m_2,m_3)...ψ(m_1,m_2,\ldots,m_k)$?
If we find, general dispersion $ψ(m_1,m_2),ψ(m_1,m_2,m_3),...,ψ(m_1,m_2,\ldots,m_k)$ can we answer that question: Why, is there such a number $k$ for function $f(n)$ always $f^k(n)=1$ and $g^k(n)=1$ or $g^k(n)≠1$(counterexample)?
The question is open to any editing, because I know, there are flaws in question and formulas.
Whereas the iterates of $f(2n) = n, f(2n-1) = 2n$ can be put in the form $F(2n)=n,F(2n-1) = n$. $ \qquad \qquad$ $ \qquad \qquad$ $ \qquad \qquad$ Formulas with $\ldots$ are hard to read. Your function $f(n)$ can be replaced by $F(2n-1) = 2n, F(2^k (2n-1)) = 2n-1$ whose iterations go to $1$. The backward sequence is of the form $a_1 = 1, a_{i+1} = 2^{k_i} a_i -1$ so that $a_i = F(a_{i+1})$. Then say $\varphi((k_i)_{i=1}^j )= a_j$.
– reuns Oct 01 '17 at 22:38