Hint: write it as:
$$12\cdot 6\cdot 4 \cdot 3 \cdot \left(x-\frac{1}{12}\right)\left(x-\frac{1}{6}\right)\left(x-\frac{1}{4}\right)\left(x-\frac{1}{3}\right)=15$$
Note that the symmetric terms have equal sums $\left(x-\frac{1}{12}\right)+\left(x-\frac{1}{3}\right)=\left(x-\frac{1}{6}\right)+\left(x-\frac{1}{4}\right)$ $=2x - \frac{5}{12}$. This suggests the substitution $y=x-\frac{5}{24}\,$ which "shifts" the center of symmetry to $0\,$:
$$
12\cdot 6\cdot 4 \cdot 3 \cdot \left(y+\frac{1}{8}\right)\left(y+\frac{1}{24}\right)\left(y-\frac{1}{24}\right)\left(y-\frac{1}{8}\right)=15 \\[5px]
\iff \quad 12\cdot 6\cdot 4 \cdot 3 \cdot \left(y^2-\frac{1}{8^2}\right)\left(y^2-\frac{1}{24^2}\right) = 15
$$
The latter is a biquadratic which can be solved for $y^2\,$, which then gives $y\,$, then $x$.