Once I came across the following problem: find the roots of $(x+1)(x+3)(x+5)(x+7) + 15 = 0$. Here it is how I proceeded:
\begin{align*} (x+1)(x+3)(x+5)(x+7) + 15 & = [(x+1)(x+7)][(x+3)(x+5)] + 15\\ & = (x^2 + 8x + 7)(x^2 + 8x + 15) + 15\\ & = (x^2 + 8x + 7)[(x^2 + 8x + 7) + 8] + 15\\ & = (x^2 + 8x + 7)^2 + 8(x^2 + 8x + 7) + 15 \end{align*} If we make the substitution $y = x^2 + 8x + 7$, we get \begin{align*} y^2 + 8y + 15 = (y^2 + 3y) + (5y + 15) = y(y+3) + 5(y+3) = (y+5)(y+3) = 0 \end{align*} From whence we obtain that: \begin{align*} y + 5 = 0\Leftrightarrow x^2 + 8x + 12 = 0 \Leftrightarrow (x+4)^2 - 4 = 0\Leftrightarrow x\in\{-6,-2\}\\ \end{align*} Analogously, we have that \begin{align*} y + 3 = 0\Leftrightarrow x^2 + 8x + 10 = 0\Leftrightarrow (x+4)^2 - 6 = 0\Leftrightarrow x\in\{-4-\sqrt{6},-4+\sqrt{6}\} \end{align*} Finally, the solution set is given by $S = \{-6,-2,-4-\sqrt{6},-4+\sqrt{6}\}$.
Differently from this approach, could someone provide me an alternative way of solving this problem? Any contribution is appreciated. Thanks in advance.