Let $ Z $ be a complex number with nonzero imaginary part such that $$ (2Z + 1)(3Z + 1)(5Z + 1)(30 Z + 1) = 10 $$
Then compute $$ \frac{\text {sum of all values of Z}}{\text {product of all values of Z} } $$
Let $ Z $ be a complex number with nonzero imaginary part such that $$ (2Z + 1)(3Z + 1)(5Z + 1)(30 Z + 1) = 10 $$
Then compute $$ \frac{\text {sum of all values of Z}}{\text {product of all values of Z} } $$
Hint: $1/2+1/30=1/3+1/5 = 2 \cdot 4/15\,$, which suggests the substitution $z = x - 4/15\,$, which gives a biquadratic in $x\,$:
$$ 2\cdot3\cdot5\cdot30\left(z+\frac{1}{2}\right)\left(z+\frac{1}{3}\right)\left(z+\frac{1}{5}\right)\left(z+\frac{1}{30}\right) \\ = 900\left(x+\frac{7}{30}\right)\left(x+\frac{1}{15}\right)\left(x-\frac{1}{15}\right)\left(x-\frac{7}{30}\right) \\ = 900\left(x^2-\frac{7^2}{30^2}\right)\left(x^2-\frac{1}{15^2}\right) \\ = \frac{1}{225}(900x^2-49)(225x^2-1) $$
Then $225(\text{LHS} - 10)$ factors into two qadratics, one of which has the complex roots being sought:
$$ (900x^2-49)(225x^2-1)-2250=(900 x^2 + 71) (225 x^2 - 31) $$