Theorem (Bounded Convergence Theorem) Let $\{f_n\}$ be a sequence of measurable functions on a set of finite measure $E$. Suppose $\{f_n\}$ is uniformly pointwise bounded on $E$, that is , there is a number $M\geq 0$ for which $|f_n| \leq M$ for all $n$. If $\{f_n\} \to f$ pointwise on $E$, then $\lim\limits_{n \to \infty} \int_E f_n = \int_E f.$
Why is it important in this theorem for it to be uniformly pointwise bounded as opposed to just pointwise bounded? Is this because if it is not uniformly bounded than it is certainly not uniformly convergent.