I assume we're considering the complete Lebesgue measure, i.e. subsets of null sets are measurable. We prove the following claim.
Claim: Let $f:\mathbb R\rightarrow\mathbb R$, and for $n\in\mathbb Z_{>0}$ let $f_n:\mathbb R\rightarrow\mathbb R$ be measurable, with the following properties. We have $\liminf_{n\rightarrow\infty}\|f_n\|_1< \infty$, we have $f_n(x)\rightarrow f(x)$ almost everywhere, and for each $M\in\mathbb R_{\ge 0}$ there exists $n\in\mathbb Z_{>0}$ such that $\int_{\mathbb R\setminus[-M,M]}|f_n(x)|\mathrm dx>1$. Then we have $\lim_{n\rightarrow\infty}\|f_n\|_1\neq\|f\|_1$, should the left hand side be well-defined.
First, let's get rid of some technical obstacles. For this purpose replace $f$ in the claim with $g:\mathbb R\rightarrow\mathbb R_{\ge 0}$ and $f_n$ by $g_n:\mathbb R\rightarrow\mathbb R_{\ge 0}$ to obtain the claim for non-negative functions. If the claim holds, then so does the claim for non-negative functions since this is a special case. If the claim does not hold, then there exist $f$, $f_n$ with all properties and such that $\|f\|_1=\lim_{n\rightarrow\infty}\|f_n\|_1$. Set $g(x)=|f(x)|$, $g_n(x)=|f_n(x)|$, notice that $g_n(x)\rightarrow g(x)$ a.e. and that the other properties as well as $\|g\|_1=\lim_{n\rightarrow\infty}\|g_n\|_1$ trivially hold, so the claim for non-negative functions also does not hold. This shows that the two claims are equivalent, and we may hence restrict to non-negative functions.
Next, notice that $f$ being an a.e. pointwise limit of measurable functions is itself measurable. Let $\mathcal E$ be a measurable set such that $f_n(x)\rightarrow f(x)$ for $x\in\mathcal E$ and such that $\mathbb R\setminus\mathcal E$ is a null set. Let $g_n(x)=f_n(x)$, $g(x)=f(x)$ for $x\in\mathcal E$, and $g_n(x)=g(x)=0$ otherwise. Then $g_n$, $g$ are measurable. Clearly, the claim and the claim with $f_n$, $f$ replaced by $g_n$, $g$ are equivalent, so we may also assume that $f_n$ converges pointwise to $f$ (not only a.e.).
Let $f_n$ have the desired properties. Now, we extract an increasing injection $\nu:\mathbb Z_{>0}\rightarrow\mathbb Z_{>0}$ such that $\int_{\mathbb R\setminus[-n,n]}g_n(x)\mathrm dx>1$, where $g_n=f_{\nu(n)}$, as follows. For given $M$ let $N(M)$ be such that $\int_{\mathbb R\setminus[-M,M]}f_{N(M)}(x)\mathrm dx>1$.
Using $\|f_n\|_1<\infty$ and $f_n\ge 0$, let $M(n)$ be such that $\int_{\mathbb R\setminus[-M(n),M(n)]}f_n(x)\mathrm dx<1$.
Let $\nu(1)=N(1)$. For $n\in\mathbb Z_{>0}$ let $M=\max\{M(n):n\in\mathbb Z\cap[1,\nu(n)]\}\cup\{n+1\}$ and $\nu(n+1)=N(M)$. Notice that $\nu(n+1)>\nu(n)$ because $\int_{\mathbb R\setminus[-M,M]}f_n(x)\mathrm dx<1$ for all $n\le\nu(n)$ (since $M\ge M(n)$) and that $\int_{\mathbb R\setminus[-(n+1),n+1]}f_{\nu(n+1)}(x)\mathrm dx>1$ since $M\ge n+1$. Hence, the sequence $\{g_n\}$ has the desired properties. Now, it is straightforward to check that the original claim and the following claim are equivalent.
Claim: For $n\in\mathbb Z_{>0}$ let $f_n:\mathbb R\rightarrow\mathbb R_{\ge 0}$ be measurable, with the following properties. The (measurable) pointwise limit $f:\mathbb R\rightarrow\mathbb R_{\ge 0}$, $x\mapsto\lim_{n\rightarrow\infty}f_n(x)$, exists, we have $\liminf_{n\rightarrow\infty}\|f_n\|_1<\infty$ for all $n$, and we have $\int_{\mathbb R\setminus[-n,n]}|f_n(x)|\mathrm dx>1$ for all $n$. Then we have $\lim_{n\rightarrow\infty}\|f_n\|_1\neq\|f\|_1$, if the left hand side is well-defined.
Let $f_n$ have the desired properties. First, notice that by Fatou's Lemma we have $\|f\|_1\le\liminf_{n\rightarrow\infty}\|f_n\|_1<\infty$ (considering the restriction to the Borel algebra of the completion of the Borel algebra does no harm here, since the domains can be any measure spaces). So, let $M$ be sufficiently large such that $\int_{\mathbb R\setminus[-M,M]}f(x)\mathrm dx\le 1$. Further, let $g=\chi_{[-M,M]}f$ and $g_n=\chi_{[-M,M]}f_n$, then $g_n$ converges pointwise to $g$ and Fatou's Lemma yields $\|g\|_1\le\liminf_{n\rightarrow\infty}\|g_n\|_1$, which further gives $\|f\|_1<\|g\|_1+1\le\liminf_{n\rightarrow\infty}\|g_n\|_1+1\le\liminf_{n\rightarrow\infty}\|f_n\|_1$. Thus, we have even established the following, stronger result.
Corollary: For $n\in\mathbb Z_{>0}$ let $f_n:\mathbb R\rightarrow\mathbb R_{\ge 0}$ be measurable, with the following properties. The (measurable) pointwise limit $f:\mathbb R\rightarrow\mathbb R_{\ge 0}$, $x\mapsto\lim_{n\rightarrow\infty}f_n(x)$, exists, we have $\liminf_{n\rightarrow\infty}\|f_n\|_1<\infty$ for all $n$, and we have $\int_{\mathbb R\setminus[-n,n]}|f_n(x)|\mathrm dx>1$ for all $n$. Then we have $\|f\|_1<\lim_{n\rightarrow\infty}\|f_n\|_1$.
As clarified in the comments, the assumption $\liminf_{n\rightarrow\infty}\|f_n\|_1<\infty$ is crucial. Otherwise, we may consider $f_n=\chi_{[-(n+1),n+1]}$ and $f\equiv 1$, yielding $\|f\|_1=\infty=\lim_{n\rightarrow\infty}\|f_n\|_1$. On the other hand, notice that we may even have $\|f_n\|_1=\infty$ for infintely many $n$, as long as pointwise convergence is preserved and we have $\|f_n\|_1<\infty$ for infintely many $n$. An example would be $f_{2n}=f+\chi_{\mathbb R\setminus[-2n,2n]}$, $f_{2n+1}=f+\chi_{[2n+1,2n+2]}+\chi_{[-2n-2,-2n-1]}$.