$\zeta(2)$
The inequality
$$9<\pi^2<10$$
can be obtained from series
$$\zeta(2)=\frac{\pi^2}{6}=\frac{3}{2}+\frac{1}{2}\sum_{k=0}^\infty \frac{1}{(k+1)^2(k+2)^2}\tag{1}$$
and
$$\zeta(2)=\frac{\pi^2}{6}=\frac{5}{3}-\sum_{k=1}^\infty \frac{1}{(k+1)(k+2)^2(k+3)}\tag{2}$$
Both of them have constant numerator and the denominator a polynomial of fourth degree.
$\zeta(3)$
Similarly, for Apéry's constant we can write the inequality
$$\frac{6}{5}<\zeta(3)<\frac{5}{4}$$
from series
$$\zeta(3)=\frac{6}{5}+\sum_{k=2}^\infty \frac{1}{k^3+4k^7}\tag{3}$$
and
$$\zeta(3)=\frac{5}{4}-\sum_{k=0}^\infty \frac{1}{(k+1)(k+2)^3(k+3)}\tag{4}$$
However, the degree of the polynomials is not the same in this case.
Is there a series for $\zeta(3)-\dfrac{6}{5}$ having the denominator a polynomial of order 5?
[EDIT]
From Jack D'Aurizio's study,
$$\begin{align} \zeta(3)&=\frac{26}{21}-\frac{32}{7}\sum_{k=0}^\infty \frac{1}{(2k+1)(2k+3)^3(2k+5)}\\ &=\frac{1138}{945}-\frac{32}{7}\sum_{k=1}^\infty \frac{1}{(2k+1)(2k+3)^3(2k+5)}\\ &=\frac{198862}{165375}-\frac{32}{7}\sum_{k=2}^\infty \frac{1}{(2k+1)(2k+3)^3(2k+5)}\\ &=\frac{9741838}{8103375}-\frac{32}{7}\sum_{k=3}^\infty \frac{1}{(2k+1)(2k+3)^3(2k+5)}\\ &=\frac{2893129886}{2406702375}-\frac{32}{7}\sum_{k=4}^\infty \frac{1}{(2k+1)(2k+3)^3(2k+5)}\\ &=\frac{4550782178678}{3785742835875}-\frac{32}{7}\sum_{k=5}^\infty \frac{1}{(2k+1)(2k+3)^3(2k+5)}\\ \end{align}$$
After James Arathoon's answer,
$$\begin{align} \zeta(3)&=1+\frac{1}{2}\sum_{k=0}^\infty \frac{2k+3}{(k+1)^3(k+2)^3}\\ \\ &=1+\frac{1}{2}\sum_{k=1}^\infty \frac{2k+1}{k^3(k+1)^3}\\ \\ \zeta(3)&=\frac{6}{7}+\frac{64}{7}\sum_{k=0}^\infty \frac{k+1}{(2k+1)^3(2k+3)^3}\\ \\ &=\frac{6}{7}+\frac{64}{7}\sum_{k=1}^\infty \frac{k}{(4k^2-1)^3}\\ \end{align}$$
$\zeta(3)\approx \frac{6}{5}$ is a consequence of the continued fraction in formula (35), Apéry's Constant from Wolfram MathWorld.
http://www.wolframalpha.com/input/?i=int_0%5E1+%5B4x%5E6(1-x)%5E4log%5E2(1%2Fx)%2F(1%2Bx%5E2)%5Ddx
– Jaume Oliver Lafont Nov 09 '17 at 11:21http://www.wolframalpha.com/input/?i=int_0%5E1+%5B4x%5E6(1-x)%5E4log%5E2(1%2Fx)%2F(1%2Bx%5E2)%5Ddx
– Jaume Oliver Lafont Nov 09 '17 at 11:25$$30+8\int_0^1 \frac{x(1-x)^2\log^2\left(x\right)}{1+x^2}dx = \pi^3 =32-16\int_0^1 \frac{x^2\log^2\left(x\right)}{1+x^2}dx$$
– Jaume Oliver Lafont Nov 13 '17 at 06:37