For integers $a,b,k$, how would one evaluate (or find an upper/lower bound) to $$\sum_{n≤k}\frac{\sigma(n)^a}{n^b}$$ Where $\sigma(n)$ denotes the divisor sigma function?
$\bf{Edit:}$ More specifically, how would one evaluate $$\sum_{n≤k}\frac{(\sigma(n)-n)^s}{n^{s-1}}$$ for some integer $s>2$?