$\lVert x \rVert_2 \le \lVert x \rVert_1$ is equivalent to $\lVert x \rVert_2^2 \le \lVert x \rVert_1^2$ (norms are non-negative) which can be shown in an elementary way:
$$\lVert x \rVert_2^2 = \sum_i \lvert x_i\rvert^2 \le \left( \sum_i \lvert x_i \rvert \right)^2 = \lVert x \rVert_1^2$$
By expanding the product $\left(\sum_i |x_i| \right)^2 = \sum_i |x_i|^2 + \sum_{i \neq j} |x_i| |x_j| $ where all cross-terms $|z_i| |z_j| \ge 0$.
Intuition for bounds on 2-norm: if $x$ has one component $x_i$ much larger (in magnitude) than the rest, the other components become negligible, so $\lVert x \rVert_2 \approx \sqrt{x_i^2} = |x_i| \approx \lVert x \rVert_1$.
On the other hand, if the components of $x$ are about equal (in magnitude), $\lVert x \rVert_2 \approx \sqrt{n x_i^2} = \sqrt n \lvert x_i \rvert$ while $\lVert x \rVert_1 \approx n \lvert x_i \rvert$, so $\lVert x \rVert_1 \approx \sqrt n \lVert x \rVert_2 $.
In general, by Hölder's inequality, for $1 \le p \le q$,
$$\lVert x \rVert_q \le \lVert x \rVert_p \le n^{1/p - 1/q} \lVert x \rVert_q $$
See Inequalities in $l_p$ norm
$$ |\ x |2 = \sqrt{ \sum{i=1}^{n} | x_i |^{2} } \leq \sum_{i=1}^{n} \sqrt{ | x_ i |^{2} } = \sum_{i=1}^{n} |x_i| = |\ x |1.$$ Then, using the Cauchy–Schwarz inequality we get for all $x\in\mathbb{R}^n$: $$ \Vert x\Vert_1= \sum\limits{i=1}^n|x_i|= \sum\limits_{i=1}^n|x_i|\cdot 1\leq \left(\sum\limits_{i=1}^n|x_i|^2\right)^{1/2}\left(\sum\limits_{i=1}^n 1^2\right)^{1/2}= \sqrt{n}\Vert x\Vert_2, $$
– Dragonite Mar 19 '18 at 12:50