Cauchy-Schwarz inequality and the fact that $\|\cdot\|_2\le\|\cdot\|_1$ imply
$$|\langle X, Q\rangle|\le \|X\|_2\|Q\|_2\le \|X\|_1\|Q\|_2 =\|Q\|_2. $$
Therefore, since $\{|\langle X, Q\rangle|\ge t\}\subseteq\{\|Q\|_2\ge t\}$, this implies
$$\begin{align}
\mathbb P\left(|\langle X, Q\rangle|\ge t\right)&\le \mathbb P\left(\|Q\|_2\ge t\right)\\
&=\mathbb P\left(\|Q\|_2^2\ge t^2\right)\\
&=\mathbb P\left(\sum_{i=1}^n(Q_i/\sigma)^2\ge (t/\sigma)^2\right)\\
&= 1 - F_{\chi_n^2}(t^2/\sigma^2)\\
&= 1 -\frac{1}{\Gamma(n/2)}\gamma\left(\frac n2,\frac{t^2}{2\sigma^2}\right)\tag1 \end{align}$$
Where $F_{\chi_n^2}$ denotes the CDF of the $\chi^2$ distribution with $n$ degrees of freedom.
I believe bound $(1)$ is quite tight, but if you're not looking for something so precise, note that $(Q_i/\sigma)^2 $ is a sub-exponential random variable with parameter $(4,4)$ and so $\sum_{i=1}^n(Q_i/\sigma)^2$ is sub-exponential with parameter $(4n,4)$, and therefore it satifies the tail bound :
$$\mathbb P\left(\sum_{i=1}^n(Q_i/\sigma)^2\ge (t/\sigma)^2\right) =\begin{cases}\exp\left(-\frac{(t/\sigma)^4}{8n}\right) &\text{ if } 0\le (t/\sigma)^2\le n\\
\exp\left(-\frac{(t/\sigma)^2}{8}\right) &\text{ if } (t/\sigma)^2> n \end{cases}\tag 2 $$
You can use these notes by Peter Bartlett as reference for the above claims.