2

Given matrix $M$

$$ M= \begin{bmatrix}0&1&0&0\\2&0&-1&0\\0&7&0&6\\0&0&3&0 \\ \end{bmatrix} $$

  1. Find a Basis for the Null-Space of $ M$.

  2. Does $(2, 2, 3, 3)$ belong to the Null space of$ M $? (Explain).

  3. Find the characteristic polynomial and the eigenvalues of $M$.

  4. Show that M is similar to a diagonal matrix and give all the needed matrices ($P$ and $D$).


for part 1) I got no basis so it is a trivial..

for part 2) I tried to think of making span but the problem is there is no basis for nullspace so can anyone give me a hint or solution for it?

for part 3) I found the characteristic polynomial and the eigenvalues of M, $x_1 = -2 , x_2 = 2 , x_3 = -3 , x_4 = 3 $ the problem is in part 4 is that i need to show that by this equation $M=P^(-1) D P$ .. can anyone help me to find $P$ and $D$ so that i can proceed.. Please help me as much as you can.

Glorfindel
  • 3,955
  • 1
  • This Question seems to present difficulties with parts 2 and 4 (similarity), and you've proposed a duplicate about finding a null space with a matrix of less than full rank (where here the OP apparently found the matrix has full rank). I don't the proposed duplicate is closely related. – hardmath May 06 '17 at 11:11

1 Answers1

3

Given $$ \mathbf{M} = \left( \begin{array}{ccrc} 0 & 1 & 0 & 0 \\ 2 & 0 & -1 & 0 \\ 0 & 7 & 0 & 6 \\ 0 & 0 & 3 & 0 \\ \end{array} \right), $$ the determinant is nonzero:

$$ \det \mathbf{M} = 36 $$

No eigenvalues are $0$. This matrix has full rank. Both null spaces are trivial: $$ \color{red}{\mathcal{N} \left( \mathbf{M} \right)} = \mathbf{0}, \qquad \color{red}{\mathcal{N} \left( \mathbf{M}^{*} \right)} = \mathbf{0} $$


Fundamental Theorem of Linear Algebra

Given a matrix $$ \mathbf{M} \in \mathbb{R}^{m\times n}_{\rho} $$ the four induced subspaces can be expressed as $$ \begin{align} % \mathbb{R}^{n} = \color{blue}{\mathcal{R} \left( \mathbf{M}^{*} \right)} \oplus \color{red}{\mathcal{N} \left( \mathbf{M} \right)} \\ % \mathbb{R}^{m} = \color{blue}{\mathcal{R} \left( \mathbf{M} \right)} \oplus \color{red} {\mathcal{N} \left( \mathbf{M}^{*} \right)} % \end{align} $$

In this problem $m=n=\rho=4$, and there are no nullspaces. The two range spaces are $$ \begin{align} % \text{Row }\mathbf{M} &= \text{span} \left\{ \, \color{blue}{ \left[ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ \end{array} \right]}, \color{blue}{\left[ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ \end{array} \right]}, \color{blue}{\left[ \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \end{array} \right]}, \color{blue}{\left[ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ \end{array} \right]} \, \right\} = \mathbb{R}^{4}\\[5pt] % \text{Col }\mathbf{M} &= \text{span} \left\{ \, \color{blue}{ \left[ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ \end{array} \right]}, \color{blue}{\left[ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ \end{array} \right]}, \color{blue}{\left[ \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \end{array} \right]}, \color{blue}{\left[ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ \end{array} \right]} \, \right\} % = \mathbb{R}^{4} % \end{align} $$


(a) Null space basis

Both null spaces are trivial and are empty bases, as noted by @Omnomnomnom.

(b) Is $x$ in the null space?

Immediate answer: since the null space is trivial there are no null vectors such that $\color{red}{x}\in\color{red}{\mathcal{N} \left( \mathbf{M} \right)}$ such that $$ \mathbf{M} \, \color{red}{x} = \mathbf{0} $$ In fact, $$ \mathbf{M} x = \mathbf{M} \left( \begin{array}{c} 2 \\ 2 \\ 3 \\3 \end{array} \right) = \left( \begin{array}{c} 2 \\ 1 \\ 32 \\ 9 \end{array} \right) $$

(c) Eigenvalues

The characteristic polynomial is defined as $$ p(\lambda) = \det \left( \mathbf{M} - \lambda \mathbf{I}_{4} \right) = \det \left( \begin{array}{rrrr} -\lambda & 1 & 0 & 0 \\ 2 & -\lambda & -1 & 0 \\ 0 & 7 & -\lambda & 6 \\ 0 & 0 & 3 & -\lambda \\ \end{array} \right) $$ The roots of the characteristic polynomial are the eigenvalues.

Attack using minors and cofactors. Level I: $$ \det \left( \mathbf{M} - \lambda \mathbf{I}_{4} \right) = - \lambda \det \underbrace{\left( \begin{array}{rrr} -\lambda & -1 & 0 \\ 7 & -\lambda & 6 \\ 0 & 3 & -\lambda \\ \end{array} \right)}_{\mathbf{S}} - \det \underbrace{ \left( \begin{array}{crc} 2 & -1 & 0 \\ 0 & -\lambda & 6 \\ 0 & 3 & -\lambda \\ \end{array} \right) }_{\mathbf{T}} \tag{1} $$ Level II: $$ % \begin{align} %% \det \mathbf{S} &= \det \left( \begin{array}{rrr} -\lambda & -1 & 0 \\ 7 & -\lambda & 6 \\ 0 & 3 & -\lambda \\ \end{array} \right) % = -\lambda \det \left( \begin{array}{rr} -\lambda & 6 \\ 3 & -\lambda \\ \end{array} \right) + \det \left( \begin{array}{rr} 7 & 6 \\ 0 & -\lambda \\ \end{array} \right) = -\lambda^{3}+11\lambda \\[4pt] %% \det \mathbf{T} &= \det \left( \begin{array}{crc} 2 & -1 & 0 \\ 0 & -\lambda & 6 \\ 0 & 3 & -\lambda \\ \end{array} \right)% = 2 \det \left( \begin{array}{rr} -\lambda & 6 \\ 3 & -\lambda \\ \end{array} \right) = 2\lambda^{2} - 36 \lambda % \end{align} % $$ Use these results in (1) $$ \det \left( \mathbf{M} - \lambda \mathbf{I}_{4} \right) = - \lambda \left( \lambda^{3} - 11\lambda \right) - \left( 2\lambda^{2} - 36 \lambda \right) $$

Characteristic polynomial: $$ \boxed{ p(\lambda) = \lambda^4 - 13 \lambda^2 + 36 = \left( \lambda^{2} - 9 \right) \left( \lambda^{2} - 4 \right) = \left( \lambda - 3 \right) \left( \lambda + 3 \right) \left( \lambda - 2 \right) \left( \lambda + 2 \right)} $$ Spectrum: $$ \boxed{ \lambda\left( \mathbf{M} \right) = \left\{ \pm 3, \pm 2 \right\} } $$

(d) Eigenvectors

Given the matrix $\mathbf{M}$ and the eigenvalues $\lambda_{k}$ find the eigenvectors $v_{k}$ which solve the eigenvalue equation $$ \mathbf{M} v_{k} = \lambda_{k} v_{k}, \qquad \left( \mathbf{M} - \lambda_{k} \mathbf{I}_{4} \right) v_{k} = \mathbf{0} \quad k = 1,2,3,4 $$ The four eigenvectors follow. $$ \begin{align} \left( \mathbf{M} - (-3) \mathbf{I}_{4} \right) v_{1} &= \mathbf{0} \\ \left( \begin{array}{rrrr} 3 & 1 & 0 & 0 \\ 2 & 3 & -1 & 0 \\ 0 & 7 & 3 & 6 \\ 0 & 0 & 3 & 3 \\ \end{array} \right) v_{1} &= \left( \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \qquad \Rightarrow \qquad v_{1} = \left( \begin{array}{r} 1 \\ -3 \\ -7 \\ 7 \end{array} \right) \end{align} $$

$$ \begin{align} \left( \mathbf{M} - (3) \mathbf{I}_{4} \right) v_{2} &= \mathbf{0} \\ \left( \begin{array}{rrrr} 3 & 1 & 0 & 0 \\ 2 & 3 & -1 & 0 \\ 0 & 7 & 3 & 6 \\ 0 & 0 & 3 & 3 \\ \end{array} \right) v_{2} &= \left( \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \qquad \Rightarrow \qquad v_{2} = \left( \begin{array}{r} 1 \\ -3 \\ -7 \\ 7 \end{array} \right) \end{align} $$

$$ \begin{align} \left( \mathbf{M} - (-2) \mathbf{I}_{4} \right) v_{3} &= \mathbf{0} \\ \left( \begin{array}{rrrr} 2 & 1 & 0 & 0 \\ 2 & 2 & -1 & 0 \\ 0 & 7 & 2 & 6 \\ 0 & 0 & 3 & 2 \\ \end{array} \right) v_{3} &= \left( \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \qquad \Rightarrow \qquad v_{3} = \left( \begin{array}{r} 1 \\ -2 \\ -2 \\ 3 \end{array} \right) \end{align} $$

$$ \begin{align} \left( \mathbf{M} - (2) \mathbf{I}_{4} \right) v_{4} &= \mathbf{0} \\ \left( \begin{array}{rrrr} -2 & 1 & 0 & 0 \\ 2 & -2 & -1 & 0 \\ 0 & 7 & -2 & 6 \\ 0 & 0 & 3 & -2 \\ \end{array} \right)v_{4} &= \left( \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \qquad \Rightarrow \qquad v_{4} = \left( \begin{array}{r} -1 \\ -2 \\ 2 \\ 3 \end{array} \right) \end{align} $$

Examples of reductions for finding null spaces are Finding the basis of a null space, Deriving left nullspace of matrix from $EA=R$, Give bases for col(A) and null(A), Given a matrix and its reduced row echelon form, resolve the image and the kernel., Find base and dimension of given subspace

The matrix of eigenvectors is $$ \mathbf{P} = % \left( \begin{array}{cccc} v_{1} & v_{2} & v_{3} & v_{4} \end{array} \right) % = % \left( \begin{array}{rrrr} 1 & -1 & 1 & -1 \\ -3 & -3 & -2 & -2 \\ -7 & 7 & -2 & 2 \\ 7 & 7 & 3 & 3 \\ \end{array} \right) $$

To invert the matrix $\mathbf{P}$ use reduction and elementary row operations on the augmented matrix. $$ \left( \begin{array}{c|c} \mathbf{P} & \mathbf{I}_{4} \end{array} \right) \quad \rightarrow \quad \left( \begin{array}{c|c} \mathbf{E_{P}} & \mathbf{P}^{-1} \end{array} \right) $$

The first operation which clears column 1 is $$ \left( \begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 7 & 0 & 1 & 0 \\ -7 & 0 & 0 & 1 \\ \end{array} \right) \left( \begin{array}{rrrr|cccc} 1 & -1 & 1 & -1 & 1 & 0 & 0 & 0 \\ -3 & -3 & -2 & -2 & 0 & 1 & 0 & 0 \\ -7 & 7 & -2 & 2 & 0 & 0 & 1 & 0 \\ 7 & 7 & 3 & 3 & 0 & 0 & 0 & 1 \\ \end{array} \right) %% = %% \left( \begin{array}{rrrr|rccc} 1 & -1 & 1 & -1 & 1 & 0 & 0 & 0 \\ 0 & -6 & 1 & -5 & 3 & 1 & 0 & 0 \\ 0 & 0 & 5 & -5 & 7 & 0 & 1 & 0 \\ 0 & 14 & -4 & 10 & -7 & 0 & 0 & 1 \\ \end{array} \right) $$ The complete sequence of elementary matrices is clear columns 4, 3, 2, 1: $$ % \left( \begin{array}{cccr} 1 & 0 & 0 & \frac{1}{5} \\ 0 & 1 & 0 & \frac{1}{5} \\ 0 & 0 & 1 & -\frac{3}{10} \\ 0 & 0 & 0 & \frac{3}{10} \\ \end{array} \right) % \left( \begin{array}{ccrc} 1 & 0 & -\frac{1}{6} & 0 \\ 0 & 1 & \frac{1}{30} & 0 \\ 0 & 0 & \frac{1}{5} & 0 \\ 0 & 0 & \frac{1}{3} & 1 \\ \end{array} \right) % \left( \begin{array}{crcc} 1 & -\frac{1}{6} & 0 & 0 \\ 0 & -\frac{1}{6} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & \frac{14}{6} & 0 & 1 \\ \end{array} \right) % \left( \begin{array}{rccc} 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 7 & 0 & 1 & 0 \\ -7 & 0 & 0 & 1 \\ \end{array} \right) $$ The above product is the inverse matrix: $$ \mathbf{P}^{-1} = \frac{1}{10} \left( \begin{array}{rrrr} -2 & 3 & -1 & 2 \\ 2 & 3 & 1 & 2 \\ 7 & -7 & 1 & -3 \\ -7 & -7 & -1 & -3 \\ \end{array} \right) $$ $$ % \boxed{ \begin{align} % % \mathbf{P}^{-1} \, \mathbf{M} \, \mathbf{P} &= \mathbf{D} \\ % \frac{1}{10} \left( \begin{array}{rrrr} -2 & 3 & -1 & 2 \\ 2 & 3 & 1 & 2 \\ 7 & -7 & 1 & -3 \\ -7 & -7 & -1 & -3 \\ \end{array} \right) % \left( \begin{array}{rrrr} 0 & 1 & 0 & 0 \\ 2 & 0 & -1 & 0 \\ 0 & 7 & 0 & 6 \\ 0 & 0 & 3 & 0 \\ \end{array} \right) % \left( \begin{array}{rrrr} 1 & -1 & 1 & -1 \\ -3 & -3 & -2 & -2 \\ -7 & 7 & -2 & 2 \\ 7 & 7 & 3 & 3 \\ \end{array} \right) % &= % \left( \begin{array}{rrrr} -3 & \color{gray}{0} & \color{gray}{0} & \color{gray}{0} \\ \color{gray}{0} & 3 & \color{gray}{0} & \color{gray}{0} \\ \color{gray}{0} & \color{gray}{0} & -2 & \color{gray}{0}\\ \color{gray}{0} & \color{gray}{0} & \color{gray}{0} & 2 \\ \end{array} \right) % \end{align} } % $$

dantopa
  • 10,342
  • @Amsar: Trivial nullspace implies no basis. The column space and row space are dimension $4$. Use the canonical basis for these spaces: the $4$ basis vectors are columns in $\mathbf{I}_{2}.$ – dantopa May 06 '17 at 02:45
  • @Amsar: Your statement on resolving the range spaces is correct. However, note the spans for both row and column space are $\mathbb{R}^{4}$. Yet another reason to eschew square matrices. It's confusing to sort the bases. – dantopa May 06 '17 at 04:18
  • 1
    A trivial space has an "empty basis", but it technically has a basis. – Ben Grossmann May 06 '17 at 05:46
  • @Omnomnomnom: That was a hair I was reluctant to split. Glad you brought it up. – dantopa May 06 '17 at 05:49
  • 1
    Guys, what about part 4.. how to show that M is similar to diagonal matrix? –  May 09 '17 at 22:06