Immediately:
$$\mathbf{A}\in\mathbb{R}^{4\times 6}$$
The problem is to resolve a space of dimension $4$.
The row reduction identifies the
fundamental columns:
$$
\mathbf{A} =
\left[
\begin{array}{crrcr}
\boxed{1} & -2 & 9 & 5 & 4 \\
0 & \boxed{1} & -3 & 0 & -7 \\
0 & 0 & 0 & \boxed{1} & -2 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\right]
$$
The three fundamental columns identify the three vectors which span the $\color{blue}{range}$ space:
$$
\left[ \begin{array}{rrrcr}
\color{blue}{1} & \color{blue}{-2} & 9 & \color{blue}{5} & 4 \\
\color{blue}{1} & \color{blue}{-1} & 6 & \color{blue}{5} & -3 \\
\color{blue}{-2} & \color{blue}{0} & -6 & \color{blue}{1} & -2 \\
\color{blue}{4} & \color{blue}{1} & 9 & \color{blue}{1} & -9
\end{array} \right]
$$
Formally,
$$
\color{blue}{\mathcal{R}\left( \mathbf{A} \right)} = \text{span } \left\{ \,
\color{blue}{\left[
\begin{array}{r}
1 \\
1 \\
-2 \\
4 \\
\end{array}
\right]}, \,
\color{blue}{\left[
\begin{array}{r}
-2 \\
-1 \\
0 \\
1 \\
\end{array}
\right]}, \,
\color{blue}{\left[
\begin{array}{r}
5 \\
5 \\
1 \\
1 \\
\end{array}
\right]}
\, \right\}
$$
The matrices have rank $\rho = 3$.
Therefore, the range space $\color{blue}{\mathcal{R}\left( \mathbf{A} \right)}$ has dimension $3$.
The
Fundamental Theorem of Linear Algebra dictates that a matrix $\mathbb{A}\in\mathbb{C}^{m \times n}$ induces the four fundamental subspaces:
$$
\begin{align}
%
\mathbb{C}^{n} =
\color{blue}{\mathcal{R} \left( \mathbf{A}^{*} \right)} \oplus
\color{red}{\mathcal{N} \left( \mathbf{A} \right)} \\
%
\mathbb{C}^{m} =
\color{blue}{\mathcal{R} \left( \mathbf{A} \right)} \oplus
\color{red} {\mathcal{N} \left( \mathbf{A}^{*} \right)}
%
\end{align}
$$
One vector is needed to complete the domain, the vector which will provide the span for $\color{red} {\mathcal{N} \left( \mathbf{A}^{*} \right)}$.
The $\color{red}{null}$ space vectors are found through Gauss-Jordan elimination of the augmented matrix.
Clear column 1.
$$
%
\left[
\begin{array}{rrcc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & -4 & 0 & 1 \\
\end{array}
\right]
%
\left[ \begin{array}{c|c}
\mathbf{A} & \mathbf{I}_{4}
\end{array} \right]
%
=
\left[
\begin{array}{crrrr|rrcc}
\color{gray}{1} & -2 & 9 & 5 & 4 & 1 & 0 & 0 & 0 \\
\color{gray}{0} & 1 & -3 & 0 & -7 & -1 & 1 & 0 & 0 \\
\color{gray}{0} & -2 & 6 & 11 & -8 & 0 & 2 & 1 & 0 \\
\color{gray}{0} & 5 & -15 & -19 & 3 & 0 & -4 & 0 & 1 \\
\end{array}
\right]
%
= \xi_{1}
$$
Clear column 2.
$$
\left[
\begin{array}{crcc}
1 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & -5 & 0 & 1 \\
\end{array}
\right]
%
\xi_{1}
=
\left[
\begin{array}{ccrrr|rrcc}
\color{gray}{1} & \color{gray}{0} & 3 & 5 & -10 & -1 & 2 & 0 & 0 \\
\color{gray}{0} & \color{gray}{1} & -3 & 0 & -7 & -1 & 1 & 0 & 0 \\
\color{gray}{0} & \color{gray}{0} & 0 & 11 & -22 & -2 & 4 & 1 & 0 \\
\color{gray}{0} & \color{gray}{0} & 0 & -19 & 38 & 5 & -9 & 0 & 1 \\
\end{array}
\right]
%
= \xi_{2}
%
$$
Normalize row three, then clear column 3.
$$
\left[
\begin{array}{ccrc}
1 & 0 & -5 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 19 & 1 \\
\end{array}
\right]
%
\xi_{2}
=
\left[
\begin{array}{ccrcr|rrrc}
\color{gray}{1} & \color{gray}{0} & 3 & \color{gray}{0} & 0 & -\frac{1}{11} & \frac{2}{11} & -\frac{5}{11} & 0 \\
\color{gray}{0} & \color{gray}{1} & -3 & \color{gray}{0} & -7 & -1\ & 1\ & 0\ & 0 \\
\color{gray}{0} & \color{gray}{0} & 0 & \color{gray}{1} & -2 & -\frac{2}{11} & \frac{4}{11} & \frac{1}{11} & 0 \\\hline
\color{gray}{0} & \color{gray}{0} & 0 & \color{gray}{0} & 0 & \color{red}{\frac{17}{11}} & \color{red}{-\frac{23}{11}} & \color{red}{\frac{19}{11}} & \color{red}{1} \\
\end{array}
\right]
%
$$
The red vector is
$$
\color{red} {\mathcal{N} \left( \mathbf{A}^{*} \right)} = \text{span } \left\{ \,
\color{red}{
\left[
\begin{array}{r}
17 \\
-23 \\
19 \\
11 \\
\end{array}
\right]}
\, \right\}
$$
The decomposition of the image of $\mathbf{A}$
$$
\begin{align}
\mathbb{C}^{m} &=
\color{blue}{\mathcal{R} \left( \mathbf{A} \right)} \oplus
\color{red} {\mathcal{N} \left( \mathbf{A}^{*} \right)} \\
%
% range
&=
\text{span } \left\{ \,
\color{blue}{\left[
\begin{array}{r}
1 \\
1 \\
-2 \\
4 \\
\end{array}
\right]}, \,
\color{blue}{\left[
\begin{array}{r}
-2 \\
-1 \\
0 \\
1 \\
\end{array}
\right]}, \,
\color{blue}{\left[
\begin{array}{r}
5 \\
5 \\
1 \\
1 \\
\end{array}
\right]}
\, \right\}
% null
\oplus
\text{span } \left\{ \,
\color{red}{
\left[
\begin{array}{r}
17 \\
-23 \\
19 \\
11 \\
\end{array}
\right]}
\, \right\}
\end{align}
$$
The dimension of the $\color{red}{null}$ space is $1$.
The rank-nullity theorem as applied to this matrix $\mathbf{A}\in\mathbf{R}^{4\times 6}_{3}$
$$
\begin{align}
\text{rank } \mathbf{A} + \text{nullity } \mathbf{A} &= n \\
3 + 1 & = 4
\end{align}
$$
Another example. Here the matrix is symmetric $m=n$ and it is more challenging to keep track of vector spaces:
Find base and dimension of given subspace