To clear up confusion, work out the steps.
- Form the augmented matrix
$$
% A I
\left[
\begin{array}{c|c}
\mathbf{A} & \mathbf{I}_{3} \\
\end{array}
\right]
%
=
%
\left[
\begin{array}{rcr|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 2 & -1 & 0 & 1 & 0 \\
-3 & 1 & -4 & 0 & 0 & 1 \\
\end{array}
\right]
$$
- Clear column 1.
$$
% E
\left[
\begin{array}{rcc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
3 & 0 & 1 \\
\end{array}
\right]
% in
\left[
\begin{array}{rcr|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 2 & -1 & 0 & 1 & 0 \\
-3 & 1 & -4 & 0 & 0 & 1 \\
\end{array}
\right]
=
% out
\left[
\begin{array}{ccr|rcc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 2 & -2 & -1 & 1 & 0 \\
0 & 1 & -1 & 3 & 0 & 1 \\
\end{array}
\right]
%
$$
- Clear column 2.
$$
% E
\left[
\begin{array}{crc}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & -\frac{1}{2} & 1 \\
\end{array}
\right]
% in
\left[
\begin{array}{ccr|rcc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 2 & -2 & -1 & 1 & 0 \\
0 & 1 & -1 & 3 & 0 & 1 \\
\end{array}
\right]
=
% out
\left[
\begin{array}{ccr|rrc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & -\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{7}{2} & -\frac{1}{2} & 1 \\
\end{array}
\right]
%
$$
The
$$
\begin{align}
%
\left[
\begin{array}{c|c}
\mathbf{A} & \mathbf{I}_{3} \\
\end{array}
\right]
&=
%
\left[
\begin{array}{rcr|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 2 & -1 & 0 & 1 & 0 \\
-3 & 1 & -4 & 0 & 0 & 1 \\
\end{array}
\right] \\
%
&\qquad \qquad \qquad
\Downarrow \\
%
\left[
\begin{array}{c|c}
\mathbf{E_{A}} & \mathbf{R} \\
\end{array}
\right]
&=
%
\left[
\begin{array}{ccr|rrc}
\boxed{1} & 0 & 1 & 1 & 0 & 0 \\
0 & \boxed{1} & -1 & -\frac{1}{2} & \frac{1}{2} & 0 \\\hline
0 & 0 & 0 & \color{red}{\frac{7}{2}} & \color{red}{-\frac{1}{2}} & \color{red}{1} \\
\end{array}
\right]
%
\end{align}
$$
The unit pivots (boxed) in the matrix $\mathbf{E_{A}}$ identifies the fundamental columns of the images. The red vector in $\mathbf{R}$ is the span of the null space:resolution
$$
\boxed{
\color{blue}{\text{col } \mathbf{A}} \oplus
\color{red} {\text{null } \mathbf{A}} =
\color{blue}{\mathcal{R}\left( \mathbf{A}\right)} \oplus
\color{red} {\mathcal{N}\left( \mathbf{A}^{*}\right)} =
%
\color{blue} {
\text{span } \left\{ \,
\left[
\begin{array}{r}
1 \\
1 \\
-3 \\
\end{array}
\right],
%
\left[
\begin{array}{r}
0 \\
2 \\
1 \\
\end{array}
\right]
\, \right\}}
% % %
\oplus
% % %
%
\color{red} {
\text{span } \left\{ \,
\left[
\begin{array}{r}
\frac{7}{2} \\
-\frac{1}{2} \\
1 \\
\end{array}
\right]
\, \right\}}}
$$