-6

a. $\cos{z} = \cos2$

b. $\cosh z = \cosh2$

c. $\cos z = \cosh2$

d.$\sin z = \sinh2$

e. $\cosh z = \sin2$

f. $cos z = -1$

g. $cos z = 2$

h. $\cosh z = 2i$

i. $\sinh z = 4i$

j. $\cos z + \sin z = i$

1 Answers1

3

Hint: You can use Euler's formula $$e^{i\theta}=\cos\theta+i\sin\theta$$ and other identities \begin{eqnarray} \sin\theta&=&\dfrac{e^{i\theta}-e^{-i\theta}}{2i}\\ \cos\theta&=&\dfrac{e^{i\theta}+e^{-i\theta}}{2}\\ \sinh\theta&=&\dfrac{e^{\theta}-e^{-\theta}}{2}\\ \cosh\theta&=&\dfrac{e^{\theta}+e^{-\theta}}{2} \end{eqnarray} $$\cosh \theta=\cos i\theta~~~;~~~i\sinh\theta=\sin i\theta$$ here you find some properties of trigonometric and hyperbolic functions. Also here helps you more. There are many solved examples in this site like this, this and this. After your works we wait for your attempts on these problems and you are welcome.

Nosrati
  • 29,995