I'm pretty sure I'm on the right track, but am I missing anything? Can anything further be done with this?
Solve $\sin(z)=-1$ in the set of complex numbers.
$\sin(z)=-1$
$\Rightarrow{e^{iz}-e^{-iz} \over 2i} =-1$
$\Rightarrow e^{iz}-e^{-iz} =-2i$
$\Rightarrow e^{iz}-{1 \over e^{iz}} + 2i =0$
$\Rightarrow (e^{iz})^2-1 + 2ie^{iz} =0$
for simplicity say $x=e^{iz}$
$\Rightarrow x^2-2xi-1 =0$
$\Rightarrow x=-i$
$\Rightarrow e^{iz}=-i$
$\Rightarrow z={\ln(-i) \over i} $