METHODOLOGY $1$: Pre-Calculus Approach
In THIS ANSWER, I showed using only the limit definition of the exponential function and Bernoulli's Inequality that the logarithm function satisfies the inequalities
$$\bbox[5px,border:2px solid #C0A000]{\frac{x-1}{x}\le \log(x)\le x-1} \tag 1$$
Letting $x$ be replaced with $1+\alpha(x)$ in $(1)$ reveals
$$\frac{\alpha(x)}{1+\alpha(x)}\le \log(1+\alpha(x))\le \alpha(x)\tag 2$$
Then, noting that $(1+\alpha(x))^{1/\alpha(x)}=e^{\frac{1}{\alpha(x)}\log(1+\alpha(x))}$ and applying $(2)$, we find that
$$e^{\frac{1}{1+\alpha(x)}}\le (1+\alpha(x))^{1/\alpha(x)}\le e \tag3$$
whence applying the squeeze theorem to $(3)$ yields the coveted result
$$\bbox[5px,border:2px solid #C0A000]{\lim_{x\to a}(1+\alpha(x))^{1/\alpha(x)}=e}$$
METHODOLOGY $2$: Asymptotic Analysis
We have for $\alpha(x) \to 0$ as $x\to a$
$$\begin{align}
(1+\alpha(x))^{1/\alpha(x)}&=e^{\frac{1}{\alpha(x)}\color{blue}{\log(1+\alpha(x))}} \\\\
&=e^{\frac{1}{\alpha(x)}\color{blue}{\left(\alpha(x)+O\left(\alpha^2(x)\right)\right))}}\\\\
&=e^{1+O(\alpha(x))}\\\\
&\to e\,\,\text{as}\,\,x\to a
\end{align}$$
In the development herein, we used the asymptotic expansion $\displaystyle \log(1+t)=t+O(t^2)$.