Find $$\lim_{x\to1}\left(\tan\frac{\pi x}{4}\right)^{\tan\frac{\pi x}{2}}$$
My attempt: ON THE basis of This post $$\lim_{x\to1}\tan\frac{\pi x}{4} =1,\quad \lim_{x\to1}\tan\frac{\pi x}{2}=\infty$$
$$\implies\lim_{x\to1}\left(\tan\frac{\pi x}{4}\right)^{\tan\frac{\pi x}{2}}= e^{\lim_{x\to1}\left[\tan\frac{\pi x}{4}-1\right]\tan\frac{\pi x}{2}}$$
Now I need to solve $\lim_{x\to1}\left[\tan\frac{\pi x}{4}-1\right]\tan\frac{\pi x}{2}$, but I don't know how to go on.
\lim
$\lim$ and\tan
$\tan$. – gen-ℤ ready to perish Oct 12 '17 at 12:38$\lim_{x\to1}\left[\tan\frac{\pi x}{4}-1\right]\tan\frac{\pi x}{2}$= $\lim_{x\to1}\left[\tan\frac{\pi x}{4}-1\right]\frac{2tan\frac{\Pi x}{4}}{(1+tan\frac{\Pi x}{4})(1-tan\frac{\Pi x}{4})}=lim_{x\longrightarrow1}\frac{-2tan\frac{\Pi x}{4}}{1+tan\frac{\Pi x}{4}}$$\Longrightarrow$$\frac{-2}{2}$= -1$\Longrightarrow$Answer is $\frac{1}{e}$. So i was right in my question. I used, please because I need the answer
– Kislay Tripathi Oct 12 '17 at 13:43