How to solve $$\lim_{x \to \infty}(\dfrac{x}{x+1})^x$$
The answer is $\dfrac{1}{e}$
I can factor the $x$ out to get:
$$\lim_{x \to \infty}\left(\dfrac{x(1)}{x(1+1/x)}\right)^x = \lim_{x \to \infty}\left(\dfrac{1}{1+1/x)}\right)^x$$
How do I further simplify this to get to my limit?