Since the question asks for interesting trivia, I believe the following is appropriate as an answer.
Digits
The digit sequence is A073009 on OEIS.
This simple Python Script may be used to compute the digits of the sequence.
from decimal import Decimal, getcontext
getcontext().prec = 1003
total = Decimal(0)
for n in range(1, 10000):
term = Decimal(1) / Decimal(n) ** n
total += term
print(total)
With this I've obtained the following:
1.291285997062663540407282590595600541498619368274522317310002445136944538765234455558817041129429708984995070924815430548410487419284864197579163555947913696496974156878020799729177948273009025649230550720966638128467012053685745978703001277894129288253551770222383375319345749259967779648300849549111066964975501051975742911621097021561669532897689242789005809390814788094036799305589535200633716110465094638606808864998606531021853412479159737305271068682465224677033686046987023420196583143133968738817295689355368517985214206662641654380612245699409663560438852399693813044840101532338556989547899226146597068180753342912289091004995136410358472374167966099403742887228090823947240301242337506966587431476835029834700965969301980712205941547423918884954889204314784037389693592832744937301860181757952468190913559650620576842700890732654713723383484718562324804417342338565270511374482208606983811697064478963155480311086868468078070105703423000095477662829927022264266182213029160934485049255679992
Continued Fraction
Using the first few of the digits found, Wolfram Alpha computes the first terms of its continued fraction's sequence.
[1; 3, 2, 3, 4, 3, 1, 2, 1, 1, 6, 7, 2, 5, 3, 1, 2, 1, 8, 1, 2, 4, 1, 9, 3, 1, 1, 18, 1, 1, 29, 4, 1, 5, 2, 167, 1, 62, 4, 2, 1, 3, 3, 27, 1, 9, 1, 46, 1, 3, 2, 2, 1, 1, 3, 2, 10, 73, 1, 11, 1, 2, 1, 1, 18, 1, 4, 1, 4, 6, 1, 4, 4, 1, 6, 1, 1, 1, 2, 1, 7, 8, 4, 1, 3, 1, 4, 28, 2, 1, 6, 2, 10, 3, 1, 2, 2, 1, 4, 1, 1, 10, 1, 2, 1, 26, 5, 2, 3, 1, 4, 2, 1, 1, 1, 3, 1, 4, 7, 45, 2, 2, 6, 7, 1, 1, 5, 1]
Approximations
$$\begin{aligned}
\ln(3)^e=1.2912\color{red}{98757}\dots~&(E\sim 10^{-5})\\
\sqrt[\pi+\frac14]{\frac{\phi+\pi}{2}}=1.29128599\color{red}{20365}\dots~&(E\sim10^{-9})\\
\frac38\pi\cot^2\left(\frac{1830385}{2400594}\right)=1.29128599706266354\color{red}{88534}\dots~&(E\sim10^{-18})
\end{aligned}$$