My task is this:
i) Find the sum to$$1-x\ln x +\frac{1}{2}(x\ln x)^2-\ldots+\frac{(-1)^k}{k!}(x\ln x)^k+\ldots$$
(ii) The great norwegian mathematician Atle Selberg showed that $$\int_{0}^1\frac{dx}{x^x}=\sum_{k=1}^\infty\frac{1}{k^k}$$ when he was 15. Can you?
My works so far:
By inspection we can relate (i) to a well known series, namely $$\begin{align}e^x=\sum_{n=0}^\infty\frac{x^n}{n!}= 1+x+\frac{x^2}{2}+\frac{x^3}{6}+\ldots+\frac{x^n}{n!}+\dots\\\implies e^{-x\ln(x)}=e^{\ln x^{-x}}=x^{-x}= \frac{1}{x^x}=\\\sum_{n=0}^\infty\frac{\big((-x\ln x\big)^n}{n!}=\sum_{n=0}^\infty\frac{(-1)^n(x\ln x)^n}{n!}=\\1-x\ln x +\frac{1}{2}(x\ln x)^2-\ldots+\frac{(-1)^k}{k!}(x\ln x)^k+\ldots\end{align}$$ Which is what we wanted to show. Now comes the hard part and sadly I can't contribute much. I did tried this for fun $$\begin{align}\left(e^{-x\ln x}\right)'=e^{-x\ln x}(-x\ln x)'=e^{-x\ln x}(-\ln x - 1)=-\frac{\ln x +1}{x^x}\\\frac{d}{dx}\left[\int\frac{dx}{x^x}\right]=\frac{1}{x^x}=\frac{d}{dk}\left[\sum_{n=1}^\infty\frac{1}{k^k}\right]=-\sum_{n=1}^\infty \frac{\ln k +1}{k^k}\end{align}$$
Sadly I can't see how this is useful in order to evaluate the integral. Any help would be appriciated. Thanks in advance!