5

How do I find the following limit?

$$ \lim_{n \to \infty} \frac{\sqrt{1} + \sqrt{2} + ... + \sqrt{n}}{n\sqrt{n}} $$

The answer (from Wolfram) is $\frac{2}{3}$, but I'm not sure how to proceed.

Is this an application of the Squeeze theorem? I'm not quite sure.

  • Do you know about Riemann sums? – user404127 Jan 25 '17 at 21:46
  • @gobucksmath Not that much. Would appreciate a nudge. – Hungry Blue Dev Jan 25 '17 at 21:47
  • 1
    Related: http://math.stackexchange.com/questions/5676/how-closely-can-we-estimate-sum-i-0n-sqrti – Aryabhata Jan 25 '17 at 22:12
  • 1
    Another solution would be to compare $k^{1/2}$ with $\int_{k}^{k+1} t^{1/2} dt$ to get the behaviour of $\displaystyle\sum_{k=0}^n \sqrt{k}$ and then you can conclude. – Maxime Ramzi Jan 25 '17 at 22:42
  • @HungryBlueDev, I added an equivalent expression $\displaystyle\lim_{n\to\infty}n^{-\frac{3}{2}}(1+\sqrt{2}+\ldots+\sqrt{n})$ in the title to prevent future possible duplicates because I've seen this task in both forms. Sincerely – PinkyWay Jan 15 '20 at 04:08
  • See also: https://math.stackexchange.com/q/1172144 https://math.stackexchange.com/q/1526398 https://math.stackexchange.com/q/2415683 https://math.stackexchange.com/q/3040278 – Martin Sleziak Jan 15 '20 at 06:01

5 Answers5

5

$$\lim_{n\to +\infty}\frac{1}{n}\sum_{k=1}^{n}\sqrt{\frac{k}{n}} = \int_{0}^{1}\sqrt{x}\,dx = \color{red}{\frac{2}{3}}$$ by Riemann sums and the integrability of $\sqrt{x}$ over $[0,1]$.

For a more elementary approach, notice that $\sqrt{k}$ is pretty close to $\frac{2}{3}\left[\left(k+\frac{1}{2}\right)^{3/2}-\left(k-\frac{1}{2}\right)^{3/2}\right]$ and apply creative telescoping and squeezing.

Jack D'Aurizio
  • 353,855
4

How about Stolz-Cesaro? If $x_n \to \infty $, $y_n \to \infty $ and $$ \lim_{n\to\infty} \frac{x_{n+1}-x_n}{y_{n+1}-y_n}$$ exists, then : $$ \lim_{n\to\infty} \frac{x_n}{y_n} = \lim_{n\to\infty} \frac{x_{n+1}-x_n}{y_{n+1}-y_n}$$

NotADeveloper
  • 731
  • 1
  • 4
  • 10
4

All the other answers are by Riemann sums, but one can also use the Stolz theorem. The limit becomes $$\frac{\sqrt{n}}{n\sqrt{n}-(n-1)\sqrt{n-1}}=\frac{\sqrt{n}(n\sqrt{n}+(n-1)\sqrt{n-1})}{n^3+(n-1)^3}=$$ $$\frac{n^2+(n-1)\sqrt{n^2-n})}{n^2+n(n-1)+(n-1)^2}\to\frac{2}{3}$$

1

Fill in details: $$\frac1{n\sqrt n}\sum_{k=1}^n\sqrt k=\frac1{n}\sum_{k=1}^n\sqrt\frac kn\xrightarrow[n\to\infty]{}\int_0^1\sqrt x\,dx$$

DonAntonio
  • 211,718
  • 17
  • 136
  • 287
1

Using $\;\;\displaystyle\lim_{n\to +\infty}\frac{1}{n}\sum_{k=1}^nf\left(\frac{k}{n}\right)=\int_0^1f(x)\;dx,$ we get $$\lim_{n \to \infty} \frac{\sqrt{1} + \sqrt{2} +\ldots + \sqrt{n}}{n\sqrt{n}}=\lim_{n \to \infty}\frac{1}{n}\sum_{k=1}^n\sqrt{\frac{k}{n}}=\int_0^1\sqrt{x}\;dx=\frac{2}{3}.$$