Assume $I+AB$ is invertible, prove then that $I+BA$ is invertible and $(I+BA)^{-1} = I-B(I+AB)^{-1}A$.
My work:
$(I+AB)(I+AB)^{-1} = I$
$B(I+AB)(I+AB)^{-1} = B $
$(I+BA)B(I+AB)^{-1} = B$
$(I+BA)B(I+AB)^{-1}B^{-1} = I$
Thus $(I+BA)$ is invertible and $B(I+AB)^{-1}B^{-1}$ is its inverse. But I have no clue how to arrive to the given inverse formula. I feel like I'm missing something. Can anyone help?