I have these problems :
- Proof If $AB-I$ invertible then $BA-I$ invertible.
- Proof If $I-AB$ invertible then $I-BA$ invertible.
I think I solve it correctly, But I'm not so sure, I'll be glad to receive feedback.
- If $AB-I$ invertible then : $$\det|AB-I| \neq 0 \implies \\ \det|A-I||B| \neq 0 \implies \\ \det|B||A-I| \neq 0 \implies\\ \det|BA-I| \neq 0$$
Therefore $BA-I$ invertible.
- If $I-AB$ invertible then :
$$\det|I-AB| \neq 0 \implies \\ \det|I-B||A| \neq 0 \implies \\ \det|I-BA| \neq 0$$
Therefore $I-BA$ invertible.