Let $A$ and $B$ be $n\times n$ matrices over the field $F$. Prove that if $I-AB$ is invertible, then $I-BA$ is invertible and $(I-BA)^{-1}=I+B(I-AB)^{-1}A$.
My attempt: Since $M_{n\times n}(F)$ is linear algebra over $F$, we have $$\begin{align*} (I-BA)\cdot (I+B(I-AB)^{-1}A) &=I-BA+(I-BA)\cdot (B(I-AB)^{-1}A)\\ &=I-BA+B(I-AB)^{-1}A-BAB(I-AB)^{-1}A\\ &=I-BA+B[(I-AB)^{-1}-AB(I-AB)^{-1}]A\\ &=I-BA +B[(I-AB)(I-AB)^{-1}]A\\ &=I-BA+BA \\&=I \end{align*}$$ Similarly $(I+B(I-AB)^{-1}A)\cdot (I-BA)=I$. Hence $I-BA$ is invertible and $(I-BA)^{-1}=I+B(I-AB)^{-1}A$. Is my proof correct?
Que: $I-BA$ is invertible$\iff$$\text{det}(I-BA)\neq 0_F$. Can we prove $\text{det}(I-BA)\neq 0_F$, given $\text{det}(I-AB)\neq 0_F$? If we can show that, then we don’t have to show $(I+B(I-AB)^{-1}A)\cdot (I-BA)=I$ in above attempt, because of following lemma: Let $P,Q,R\in M_n(F)$. If $QP=PR=I$, then $Q=R$.
Once we have shown that$(I-BA)\cdot(I+(I-AB)^{-1}A)=I$ and $(I+(I-AB)^{-1}A)\cdot(I-BA)=I$. We can say that $(I+(I-AB)^{-1}A$ is the inverse of $I-BA$
– Li Kwok Keung Nov 03 '22 at 15:17