Using this and this,
$Log (a+ib)^{x+iy}$
$=\frac{1}{2}x\log (a^2+b^2)-y(2m\pi+\tan ^{-1}\frac{b}{a})+i(\frac{1}{2}y\log (a^2+b^2)+x(2m\pi+\tan ^{-1}\frac{b}{a}))$
$Log (a+ib)= \frac{1}{2}\log (a^2+b^2)+i(2n\pi+\tan ^{-1}\frac{b}{a})$
$(x+iy)Log (a+ib)$
$=\frac{1}{2}x\log (a^2+b^2)-y(2n\pi+\tan ^{-1}\frac{b}{a})+i(x(2n\pi+\tan ^{-1}\frac{b}{a})+\frac{1}{2}y\log (a^2+b^2))$
The principal values will be same if $-\pi<\frac{1}{2}y\log (a^2+b^2)+x\tan ^{-1}\frac{b}{a}\le \pi$ else $2r\pi$ (where $r$ is any integer) must be added to this argument to adjust its value in $(-\pi, \pi]$.
If $x=0$ or $(b=0$ and $a>0 ⇔ \tan ^{-1}\frac{b}{a}=0)$ , the condition becomes $-\pi<\frac{1}{2}y\log (a^2+b^2)\le \pi$
If $y=0$ or $a^2+b^2=1 ⇔ \log (a^2+b^2)=0$, the condition becomes $-\pi<x\tan ^{-1}\frac{b}{a}\le \pi$
If $y=0$ or $a^2+b^2=1$ and $x=-1$ the condition becomes $-\pi<-\tan ^{-1}\frac{b}{a}\le \pi\implies \pi>\tan ^{-1}\frac{b}{a}\ge -\tan ^{-1}\frac{b}{a}$ which is true for all $a,b$.
If $y=0,x=2$ the condition becomes $-\pi<2\tan ^{-1}\frac{b}{a}\le \pi $
$\implies -\frac{\pi}2<\tan ^{-1}\frac{b}{a}\le \frac{\pi}2$ i.e, $a>0$.