Determine all complex values of $(ie^{\pi})^{i}$ and indicate the principal value.
My attempt: $(ie^{\pi})^{i}=e^{i\log(ie^{\pi})}=e^{i[\ln|ie^{\pi}|+i\arg(ie^{\pi})]}$
Note that $\ln|ie^{\pi}|=\ln e^{\pi}=\pi$ and $\arg(ie^{\pi})=\frac{\pi}{2}+2k\pi$ for all integer $k \in \mathbb{Z}$. Hence, $(ie^{\pi})^{i}=e^{i\pi-\frac{\pi}{2}-2k\pi}=-e^{-\frac{\pi}{2}-2k\pi}$
Principal value is $-\frac{\pi}{2}$.
A few parts I'm not quite sure. Like can the principal part be $\frac{\pi}{2}$?
Also can someone help me to check whether I do it correctly or not?
EDIT: From the definition of principal value, I obtain $e^{i\operatorname{Log}(ie^{\pi})}=e^{i\pi-\frac{\pi}{2}}=-e^{-\frac{\pi}{2}}$