If you refer $\int_{(0,\,1)} y \,dx$ to the Riemann integral of $y: (0,\,1) \to \mathbb{R}$ over $(0,\,1)$, there is no such a thing. Since Riemann integral is only defined on a closed interval. But if we refer the case to general integral, it works for Lebesgue integral, and it has the same value as $\int_{[0,\,1]} y \,dx$, as we will see below.
Let me invoke measure theory to answer the question. First, suppose $y: [0,\, 1] \to \mathbb{R}$ is Riemann integrable. In measure theory, every Riemann integrable function is a Lebesgue integrable function. And a function $f: X \to \mathbb{R}$ is
Lebesgue integrable if and only if
$$
\int_X|f| \,d\mu < \infty \,.
$$
And of course, $f$ must be measurable (i.e., for every measurable set $A \subseteq \mathbb{R}$, $f^{-1}(A)$ is measurable on $X$). Hence $y$ is Lebesgue integrable by definition.
And note that every singleton in $\mathbb{R}$ has Lebesgue measure zero, i. e., $\mu(\{x\}) = 0$ for every $x \in \mathbb{R}$. Then we also have $[0,\, 1] = (0,\, 1) \cup \{0, 1\}$ and $(0,\, 1) \cap \{0, 1\} = \varnothing$, which means that $\{(0,\, 1),\, \{0, 1\}\}$ is a partition of $[0,\, 1]$.
Then by simple function approximation theorem, for every $k \in \mathbb{N}$, there exist measurable simple functions $s_k^+, s_k^-: [0,\, 1] \to [0,\, 1)$ such that
$$
\forall x \in [0,\, 1]\,\big[ 0 \leq s_1^+(x) \leq s_2^+(x) \dotsb \leq y^+(x) \big]
\;\land\; \forall x \in [0,\, 1] \left[ \lim_{k \to \infty} s_k^+(x) = y^+(x) \right]
$$
and
$$
\forall x \in [0,\, 1]\,\big[ 0 \leq s_1^-(x) \leq s_2^-(x) \dotsb \leq y^-(x) \big]
\;\land\; \forall x \in [0,\, 1] \left[ \lim_{k \to \infty} s_k^-(x) = y^-(x) \right]
$$
where $y^+ := \max \{y, 0\}$ and $y^- := \max \{-y, 0\}$. Note that $y^+$ and $y^-$ are measurable since $y$ is Lebesgue integrable. Then for every $k \in \mathbb{N}$
and $* \in \{+, -\}$, let $m_k^* \in \mathbb{N}$, and we define
$$
\mathrm{image}(s_k^*) := \{\alpha_{(k, 1)}^*, \dotsc, \alpha_{(k, m_k)}^*\}
$$
and
$$
\forall j \in \{1, \dotsc, m_k^*\} \,,\;
A_{(k,\, j)}^* := (s_k^*)^{-1}(\{\alpha_{(k,\, j)}^*\}) \,,
$$
and then we can express $s_k^*$ by
$$
s_k^* = \sum_{j = 1}^{m_k^*} \alpha_{(k, j)}^* \chi_{A_{(k, j)}^*} \,,
$$
where $\chi$ is an indicator function.
Note that $\left\{A_{(k, j)}^*\right\}_{j = 1}^{m_k^*}$ forms a partition of $[0,\,1]$, for every $k \in \mathbb{N}$ and $* \in \{+, -\}$. And since $A_{(k, j)}^* \cap \{0\} \subseteq \{0\}$ and $A_{(k, j)}^* \cap \{1\} \subseteq \{1\}$, hence we have
$$
0 \leq \mu(A_{(k, j)}^* \cap \{0\}) \leq \mu(\{0\}) = 0
$$
and
$$
0 \leq \mu(A_{(k, j)}^* \cap \{1\}) \leq \mu(\{1\}) = 0 \,,
$$
which show that $\mu(A_{(k, j)}^* \cap \{0\}) = 0$ and $\mu(A_{(k, j)}^* \cap \{1\}) = 0$, for every $j \in \{1, \dotsc, m_k^*\}$.
Then by the property of Lebesgue integral we obtain
\begin{align}
\int_{[0,\, 1]} y\,d\mu &= \int_{\{0\} \cup (0,\, 1) \cup \{1\}} y \,d\mu \\
&= \int_{\{0\}} y\,d\mu + \int_{(0,\, 1)} y \,d\mu + \int_{\{1\}} y \,d\mu \\
&= \left[ \int_{\{0\}} y^+ \,d\mu - \int_{\{0\}} y^- \,d\mu \right]
+ \left[ \int_{(0,\,1)} y^+ \,d\mu - \int_{(0,\,1)} y^- \,d\mu \right]
+ \left[ \int_{\{1\}} y^+ \,d\mu - \int_{\{1\}} y^- \,d\mu \right] \\
&= \left[ \sup_{k \in \mathbb{N}} \int_{\{0\}} s_k^+ \,d\mu
-\sup_{k \in \mathbb{N}} \int_{\{0\}} s_k^- \,d\mu \right]
+ \left[\sup_{k \in \mathbb{N}} \int_{(0,\,1)} s_k^+ \,d\mu
- \sup_{k \in \mathbb{N}} \int_{(0,\,1)} s_k^- \,d\mu
\right] \\&\quad\quad
+ \left[\sup_{k \in \mathbb{N}} \int_{\{1\}} s_k^+ \,d\mu
- \sup_{k \in \mathbb{N}} \int_{\{1\}} s_k^- \,d\mu
\right]
\\
&= \left[ \left(\sup_{k \in \mathbb{N}} \sum_{j = 1}^{m_k^+} \alpha_{(k, j)}^+
\mu\left(A_{(k, j)}^+ \cap \{0\}\right)\right)
- \left(\sup_{k \in \mathbb{N}} \sum_{j = 1}^{m_k^-} \alpha_{(k, j)}^-
\mu\left(A_{(k, j)}^- \cap \{0\}\right)\right) \right]
\\ &\quad\quad+
\left[ \left(\sup_{k \in \mathbb{N}} \sum_{j = 1}^{m_k^+} \alpha_{(k, j)}^+
\mu\left(A_{(k, j)}^+ \cap (0,\,1)\right)\right)
- \left(\sup_{k \in \mathbb{N}} \sum_{j = 1}^{m_k^-} \alpha_{(k, j)}^-
\mu\left(A_{(k, j)}^- \cap (0,\,1)\right)\right) \right]
\\ &\quad\quad+
\left[ \left(\sup_{k \in \mathbb{N}} \sum_{j = 1}^{m_k^+} \alpha_{(k, j)}^+
\mu\left(A_{(k, j)}^+ \cap \{1\}\right)\right)
- \left(\sup_{k \in \mathbb{N}} \sum_{j = 1}^{m_k^-} \alpha_{(k, j)}^-
\mu\left(A_{(k, j)}^- \cap \{1\}\right)\right) \right] \\
&= \left[ \left(\sup_{k \in \mathbb{N}} \sum_{j = 1}^{m_k^+} \alpha_{(k, j)}^+
\cdot 0\right)
- \left(\sup_{k \in \mathbb{N}} \sum_{j = 1}^{m_k^-} \alpha_{(k, j)}^-
\cdot 0\right) \right]
\\ &\quad\quad+
\left[ \left(\sup_{k \in \mathbb{N}} \sum_{j = 1}^{m_k^+} \alpha_{(k, j)}^+
\mu\left(A_{(k, j)}^+ \cap (0,\,1)\right)\right)
- \left(\sup_{k \in \mathbb{N}} \sum_{j = 1}^{m_k^-} \alpha_{(k, j)}^-
\mu\left(A_{(k, j)}^- \cap (0,\,1)\right)\right) \right]
\\ &\quad\quad+
\left[ \left(\sup_{k \in \mathbb{N}} \sum_{j = 1}^{m_k^+} \alpha_{(k, j)}^+
\cdot 0\right)
- \left(\sup_{k \in \mathbb{N}} \sum_{j = 1}^{m_k^-} \alpha_{(k, j)}^-
\cdot 0\right) \right] \\
&= (0 - 0)
+ \left[ \left(\sup_{k \in \mathbb{N}} \sum_{j = 1}^{m_k^+} \alpha_{(k, j)}^+
\mu\left(A_{(k, j)}^+ \cap (0,\,1)\right)\right)
- \left(\sup_{k \in \mathbb{N}} \sum_{j = 1}^{m_k^-} \alpha_{(k, j)}^-
\mu\left(A_{(k, j)}^- \cap (0,\,1)\right)\right) \right] \\
&\quad\quad
+(0 - 0) \\
&= \left[ \left(\sup_{k \in \mathbb{N}} \sum_{j = 1}^{m_k^+} \alpha_{(k, j)}^+
\mu\left(A_{(k, j)}^+ \cap (0,\,1)\right)\right)
- \left(\sup_{k \in \mathbb{N}} \sum_{j = 1}^{m_k^-} \alpha_{(k, j)}^-
\mu\left(A_{(k, j)}^- \cap (0,\,1)\right)\right) \right]\\
&= \sup_{k \in \mathbb{N}} \int_{(0,\,1)} s_k^+ \,d\mu
- \sup_{k \in \mathbb{N}} \int_{(0,\,1)} s_k^- \,d\mu \\
&= \int_{(0,\,1)} y^+ \,d\mu - \int_{(0,\,1)} y^- \,d\mu \\
&= \int_{(0,\,1)} y \,d\mu \,.
\end{align}
Recalling that $y$ is also Riemann integrable, then the Lebesgue integral is equal to the Riemann integral. And hence we obtain
$$
\int_{(0,\,1)} y \,d\mu
= \int_{[0,\,1]} y \,d\mu
= \int_0^1 y \,dx \,.
$$
I hope this answer could help. $\Box$