Here is a "MAD" solution :
Let $a,b,c$ three integers such that : $\gcd(a,b)=\gcd(a,y)=\gcd(b,x)=1$.
Using Bachet-Bézout's identity, there exists $u,v,w,z,t,s \in \mathbb{Z}$ such that :
$au+yv=1,\ bw+xz=1,\ at+bs=1$.
We have : $(au+yv)(bw+xz)(at+bs)=a^2tubw+a^2utzx+abtvyw+atvzxy+aub^2sw+auzxbs+vyb^2sw+vyzxbs=ax(autz+tvzy)+by(bvsw+vzxs)+ab(\overbrace{atuw+ubsw+ytvw+xuzs}^{=K\in\mathbb{Z}})=ax(tz\overbrace{(au+yv)}^{=1})+by(vs\overbrace{(bw+xz)}^{=1}) +abK=axtz+byvs+abK=1$.
So we deduce that $\gcd(ab,ax,by)=1$. Moreover, we know that $\gcd(ab,ax)\neq 1\neq \gcd(ab,by)$ so we can say that $\gcd(ax,by)=1$.
By properties of $\gcd$, if $\gcd(ax,by)=1$ then $\gcd(ax,ax+by)=1$ $\bigg($Indeed, let $d=\gcd(ax,ax+by)$, by hypothesis, we know that $1$ divides $ax$ and $by$ so by definition of divisibility $1$ divides the linear combination $ax+by$. So $1\mid d$ (by definition of $\gcd$). On the other hand, $d$ divides $ax$ and $ax+by$, so in particular $d$ divides the linear combination $ax+by-ax$, so $d$ divides $by$. By definition of $\gcd$ $d$ divides $1$. That's why $d=1$ $\bigg)$. And we also have $\gcd(by,ax+by)=1$.
By Bachet-Bézout's identity we have two new relations. Indeed, there exists $e,f,g,h, \in \mathbb{Z}$ such that:
$axe+(ax+by)f=1,\ byg+(ax+by)h=1$.
So by multiplying we have :
$1=(axtz+byvs+abK)(axe+(ax+by)f)(byg+(ax+by)h)=\big(a^2x^2etz+axbyevs+a^2bKxe+(ax+by)\overbrace{(faxtz+fbyvs+fabK)}^{=K_1\in\mathbb{Z}}\big)(byg+(ax+by)h)=\big(a^2x^2etz+axbyevs+a^2bKxe+(ax+by)K_1\big)(byg+(ax+by)h)=a^2x^2bygez+axb^2y^2gevs+a^2b^2yKgxe+(ax+by)\overbrace{\big(ha^2x^2xtz+haxbyevs+ha^2bKxe+h(ax+by)K_1+bygK_1 \big)}^{=K_2\in\mathbb{Z}}=ab\overbrace{(ax^2ygez+xby^2gevs+abyKgxe)}^{=K_3\in \mathbb{Z}}+(ax+by)K_2=abK_3+(ax+by)K_2$.
So finally, $\gcd(ax+by,ab)=1$.