I figured the best way to go about this would be to show that $(m,y)(n,x) \mid (mx+ny,mn)$ and $(mx+ny,mn) \mid (m,y)(n,x)$. So far I've done the following:
Since $\mathbb{Z}$ is a Euclidean domain, $\exists s,t\in\mathbb Z$ s. t. $(mx+ny,mn)=(mx+ny)s +mnt = mxs+nys+mnt = (m,y)(n,x)\left(\frac{mxs+nys+mnt}{(m,y)(n,x)}\right)$. Thus, $(m,y)(n,x) \mid (mx+ny,mn)$, since $\frac{mxs+nys+mnt}{(m,y)(n,x)} \in \mathbb{Z}$.
$\exists a,b,c,d\in\mathbb Z$ s.t. $(m,y) = ma+yb\;\&\;(n,x) = nc+xd$.
Then, $(m,y)(n,x)= (ma+yb)(nc+xd)=mnac+mxad+nybc+xybd$.
From here I'm not seeing any way to show that $(mx+ny,mn) \mid (m,y)(n,x)$. If anyone could give any hints I would appreciate it, thanks!