For all $x$ $$\sin x = \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$ $$\frac{\sin x}x = \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n+1)!} x^{2n}$$ $$\int\frac{\sin x}x dx= \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n+1)(2n+1)!} x^{2n+1}$$ $$\int_0^\pi\frac{\sin x}x dx= \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n+1)(2n+1)!} \pi^{2n+1}$$ which is an alternating series.Let $$u_n=\frac{\pi^{2n+1}}{(2n+1)(2n+1)!} $$ $$\frac{u_{n+1}}{u_n}=\frac{\pi ^2 (2 n+1)}{2 (n+1) (2 n+3)^2}$$ which, for large $n$ behaves like $ \frac{\pi^2}{4 n^2}$ and then convergence.
For illustration purposes, let us compute the partial sums $$S_p=\sum^{p}_{n=0} \frac{(-1)^n}{(2n+1)(2n+1)!} \pi^{2n+1}$$ We should get
$$\left(
\begin{array}{cc}
p & S_p \\
0 & 3.1415926535897932385 \\
1 & 1.4190217269064698954 \\
2 & 1.9290545348819389842 \\
3 & 1.8434453164075401160 \\
4 & 1.8525726371421099192 \\
5 & 1.8519025979652267964 \\
6 & 1.8519384674118243051 \\
7 & 1.8519370063882611164 \\
8 & 1.8519370531650493604 \\
9 & 1.8519370519572373079 \\
10 & 1.8519370519829166634 \\
11 & 1.8519370519824593386 \\
12 & 1.8519370519824662594 \\
13 & 1.8519370519824661694 \\
14 & 1.8519370519824661704
\end{array}
\right)$$
I cannot resist to once more use the approximation proposed more than 1,400 years ago (see here)
$$\sin(x) \simeq \frac{16 (\pi -x) x}{5 \pi ^2-4 (\pi -x) x}\qquad (0\leq x\leq\pi)$$ which would give $$\int\frac{\sin x}x dx=-2 \left(\log \left(4 x^2-4 \pi x+5 \pi ^2\right)+\tan
^{-1}\left(\frac{1}{2}-\frac{x}{\pi }\right)\right) $$
$$\int_0^\pi\frac{\sin x}x dx=2 \tan ^{-1}\left(\frac{4}{3}\right)\approx 1.85459$$
Using the approximation discussed here $$\sin(x)=\sum_{i=1}^3 a_i\big((\pi-x)x\big)^i\qquad (0\leq x\leq\pi)$$ we should arrive to $$\int_0^\pi\frac{\sin x}x dx=\frac{12972960}{\pi ^7}-\frac{1474704}{\pi ^5}+\frac{16296}{\pi ^3}\approx 1.85196$$