I asked a question about derivative of cosine similarity.
But no one has answered my question. Therefore I tried to do it my self as bellow.
$$ cossim(a,b)=\frac{a\cdot{b}}{\sqrt{a^2\cdot{b^2}}} \\\frac{cossim(a,b)}{\partial{a_1}}=\frac{\partial}{\partial{a_1}} \frac{a_1\cdot{b_1}+...+a_n\cdot{b_n}}{|a|\cdot|b|} \\=\frac{\partial}{\partial{a_1}}a_1\cdot{b_1}\cdot{(a_1^2+a_2^2+...a_n^2)^{-1/2}}\cdot{|b|^{-1}} \\= {b_1}\cdot{(a_1^2+a_2^2+...a_n^2)^{-1/2}}\cdot{|b|^{-1}}-a_1^2b_1(a_1^2+a_2^2+...a_n^2)^{-3/2} {|b|^{-1}} \\=\frac{b_1}{|a|\cdot{|b|}}-\frac{a_1|a|^{-2}\cdot{a_1b_1}}{|a|\cdot{|b|}} \\=\frac{b_1}{|a|\cdot{|b|}}-\frac{a_1\cdot{b_1}}{|a|\cdot{|b|}}\cdot{\frac{a_1} {|a|^2}} \\\therefore \frac{\partial}{\partial{a}}cossim(a,b)= \frac{b_1}{|a|\cdot{|b|}}-cossim(a,b)\cdot{\frac{a_1} {|a|^2}} $$
Is this correct?