$$ \cos (\mathbf{v},\mathbf{w}) = \frac{{\langle\mathbf{v}, \mathbf{w}\rangle}} {{|| {\mathbf{v} } ||\;|| \mathbf{w}||}} $$
where $\langle\mathbf{v}, \mathbf{w}\rangle$ is the dot product, and $||\cdot||$ is the second norm.
Like this thread did, we can add a little $d\mathbf{v}$ to $\mathbf{v}$:
$$ \frac{{\langle\mathbf{v}+d\mathbf{v}, \mathbf{w}\rangle}}{{|| {\mathbf{v}+d\mathbf{v} } ||\;|| \mathbf{w}||}} $$
However, suppose $$ || {\mathbf{v}+d\mathbf{v} }|| = \sqrt{f(\mathbf{v})} $$ then, $$ f(\mathbf{v})=( \mathbf{v}+d\mathbf{v} )^T( \mathbf{v}+d\mathbf{v} )= \mathbf{v}^T \mathbf{v}+d\mathbf{v} ^T\mathbf{v}+\mathbf{v}^T d\mathbf{v}+d\mathbf{v}^T d\mathbf{v} \\=||\mathbf{v}||^2+||d\mathbf{v}||^2+d\mathbf{v} ^T\mathbf{v}+\mathbf{v}^T d\mathbf{v} $$ So basically, $$ || {\mathbf{v}+d\mathbf{v} }|| = \sqrt{||\mathbf{v}||^2+||d\mathbf{v}||^2+d\mathbf{v} ^T\mathbf{v}+\mathbf{v}^T d\mathbf{v}} $$ I don't see why this equals/approxiametely equals $$ || {\mathbf{v}+d\mathbf{v} }||\approx|| \mathbf{v} ||\left( {1 + \frac{\mathbf{v}} {{|| \mathbf{v} ||^2 }} \cdot d\mathbf{v}} \right) ? $$ Particularly, if $\mathbf{v}$ and $\mathbf{u}$ are complex, I think there is a problem, no?
Can anyone gieve some suggestions/hint here? Thanks a lot.