The proof is simpler (and more $\rm\color{darkorange}{general}$) using basic gcd / lcm laws (vs. Bezout gcd identity).
Lemma $\ \ (a^{\large k})^{\large j}\! = 1\color{#90f}{\underset{a^n\,=\,1}\Longleftarrow}\!\!\!\!\!\color{#0a0}{\overset{{\rm ord}\,a\,=\,n}{\Longrightarrow}} n/(n,k)\mid j\,.\ \ $ Proof: $ $ immediate by Euclids Lemma, i.e.
$$ (a^{\large k})^{\large j}\! = 1\color{#90f}{\underset{a^n\,=\,1}\Longleftarrow}\!\!\!\!\!\color{#0a0}{\overset{{\rm ord}\,a\,=\,n}{\Longrightarrow}} n\mid kj\!\iff\! n\mid nj,kj\!\color{#c00}\iff\! n\mid(nj,kj)\!=\!(n,k)j\!\iff\! n/(n,k)\mid j\qquad$$
$\,\color{#0a0}{\rm First\ (\Rightarrow)}\,$ is by $\,n = {\rm\ ord}\, a,\,$ $\rm\color{#c00}{third}$ by the definition/universal property of the gcd and the gcd distributive law. $\,\color{#90f}{\rm Note}$ that the proof of direction $\color{#90f}{(\Leftarrow)}$ needs only $\,\color{#90f}{a^n =1},\,$ not $\,\color{#0a0}{{\rm ord}\,a = n}$.
Alternatively, dually, we can use lcm instead of gcd, using notation $\,[x,y] :={\rm lcm}(x,y),$
$$ (a^{\large k})^{\large j}\! = 1\color{#90f}{\underset{a^n\,=\,1}\Longleftarrow}\!\!\!\!\!\color{#0a0}{\overset{{\rm ord}\,a\,=\,n}{\Longrightarrow}} n\mid kj\iff n,k\mid kj\iff [n,k]\mid kj\iff [n,k]/k\mid j\qquad\qquad$$
Both proofs are equivalent by $\ [n,k]/k = n/(n,k),\ $ i.e. $\ [n,k](n,k) = nk\ $ [gcd $*$ lcm law]
Corollary $\ \ \bbox[5px,border:1px solid #c00]{{\rm ord}(a) = n\,\Rightarrow\,{\rm ord}(a^{\large k}) = \dfrac{n}{(n,k)} = \dfrac{[n,k]}k}\ $ since, generally
$\qquad\qquad\quad\underbrace{ b^{\large j} = 1\iff i\mid j}_{\small \textstyle \text{Lemma has }\, b = a^k}\ $ is equivalent to $\,b\,$ has order $\,i.\,$
$\rm\color{darkorange}{Generality\!\!:}$ proofs using gcd laws (vs. Bezout) apply much more generally, e.g. in UFDs where Bezout fails, e.g. $\,\Bbb Z[x]\,$ and $\,\Bbb Q[x,y],\,$ e.g. $\,(x,2) = 1 = (x,y)\,$ but the gcds cannot be written as linear combinations, else $\, 1 = x\,f(x,y) + y\,g(x,y)\Rightarrow\,1=0\,$ by evaluating at $\,x=0=y.\,$