Is $ x^\frac{1}{3} - y^\frac{1}{3}$ irrational, given that both $x$ and $y$ are not perfect cubes, are distinct and are integers (i.e. the two cube roots are yield irrational answers)?
I understand that the sum/difference of two irrationals can be rational (see this thread: Is the sum and difference of two irrationals always irrational?). However, if my irrationals are contained under one root (so for example $3^\frac{1}{3}$ and not $2^\frac{1}{2} + 1$), can one generalise to show that $ x^\frac{1}{p} - y^\frac{1}{q} $ is irrational, where of course $x$ and $y$ are not powers of $p$ and $q$ respectively?