0

If $(a^2−b^2)$ is a prime number where $a$ and $b\in N$, then:

  1. $a^2−b^2 = 3$
  2. $a^2−b^2 = a−b$
  3. $a^2−b^2 = a+b$
  4. $a^2−b^2 = 5$

My attempt:

$(a^2-b^2)=(a-b)(a+b)$

if $a + b = 1$ and $a^2 + b^2$ is prime. (Since $\cfrac{a^4 − b^4}{a- b} = (a + b)(a^2 + b^2)$.

Thus, in this case the pair $(a, b)$ must be $(x + 1, −x)$ and $x^2 + (x + 1)^2$ must be prime. That is, $x$ must be in OEIS A027861.)

I didn't find proper proof.

Can you explain it, please?

2 Answers2

1

If $a^2-b^2$ is prime, either $a=1-b$ or $a=b+1$. Note that $a-b < a+b$, so $a+b = 1 \implies a-b<1$ is a contradiction, hence $a-b=1$, hence $a^2-b^2 = a+b$.

1

If $a^2-b^2$ is a prime number, then $a-b$ must be $1$, because for any $a,b\in N$, $a+b\ne 1$. This directly leads to the result that $a^2-b^2=a+b$.

codetalker
  • 2,419