Finding the singular value decomposition
Start with a matrix with $m$ rows, $n$ columns, and rank $\rho$:
$$
\mathbf{A} = \mathbb{C}^{m \times n}_{\rho}.
$$
Since the question concerns the normal equations, let's fix $\rho = m$ and $m\ge n$. The matrix $\mathbf{A}$ is tall and has full column rank.
The singular value decomposition is
$$
\begin{align}
\mathbf{A} &= \mathbf{U}\, \mathbf{\Sigma} \, \mathbf{V}^{*} \\
&=
\left[ \begin{array}{cc}
\color{blue}{\mathbf{U}_{\mathcal{R}\left( \mathbf{A} \right)}} &
\color{red}{\mathbf{U}_{\mathcal{N}\left( \mathbf{A}^{*} \right)}}
\end{array} \right]
%
\left[ \begin{array}{c}
\mathbf{S} \\ \mathbf{0}
\end{array} \right]
%
\color{blue}{\mathbf{V}_{\mathcal{R}\left( \mathbf{A}^{*} \right)}}^{*}
%
\end{align}
$$
The coloring distinguishes $\color{blue}{range}$ spaces from $\color{red}{null}$ spaces.
The diagonal matrix of singular values, $\mathbf{S}\in\mathbb{R}^{\rho\times\rho}$ is
$$
\mathbf{S}_{k,k} = \sigma_{k}, \quad k=1,\rho.
$$
Manipulating the singular value decomposition
The Moore-Penrose pseudoinverse is
$$
\begin{align}
\mathbf{A}^{\dagger}
&= \mathbf{V}\, \Sigma^{\dagger} \mathbf{U}^{*} \\
%
&=
%
\color{blue}{\mathbf{V}_{\mathcal{R}\left( \mathbf{A}^{*} \right)}}
%
\left[ \begin{array}{cc}
\mathbf{S}^{-1} & \mathbf{0}
\end{array} \right]
%
\left[ \begin{array}{l}
\color{blue}{\mathbf{U}_{\mathcal{R} \left( \mathbf{A} \right)}}^{*} \\
\color{red}{\mathbf{U}_{\mathcal{N} \left( \mathbf{A}^{*} \right)}}^{*}
\end{array} \right].
%
\end{align}
$$
The Hermitian conjugate is
$$
\begin{align}
\mathbf{A}^{*}
&= \mathbf{V}\, \Sigma^{\mathrm{T}} \mathbf{U}^{*} \\
%
&=
%
\color{blue}{\mathbf{V}_{\mathcal{R}\left( \mathbf{A}^{*} \right)}}
%
\left[ \begin{array}{cc}
\mathbf{S} & \mathbf{0}
\end{array} \right]
%
\left[ \begin{array}{l}
\color{blue}{\mathbf{U}_{\mathcal{R} \left( \mathbf{A} \right)}}^{*} \\
\color{red}{\mathbf{U}_{\mathcal{N} \left( \mathbf{A}^{*} \right)}}^{*}
\end{array} \right].
%
\end{align}
$$
Resolving the product matrix
The product matrix has a simple expression:
$$
\begin{align}
\mathbf{A}^{*} \mathbf{A} &=
\left( \mathbf{V} \, \Sigma^{\mathrm{T}} \mathbf{U}^{*} \right)
\left( \mathbf{U} \, \Sigma \mathbf{V}^{*} \right) \\
%
&=
%
\color{blue}{\mathbf{V}_{\mathcal{R}\left( \mathbf{A}^{*} \right)}}
\, \mathbf{S}^{2} \,
\color{blue}{\mathbf{V}_{\mathcal{R}\left( \mathbf{A}^{*} \right)}}^{*}.
%
\end{align}
$$
The pseudoinverse of the product matrix is then
$$
\begin{align}
\left( \mathbf{A}^{*} \mathbf{A} \right)^{-1}
&=
%
\left(
\color{blue}{\mathbf{V}_{\mathcal{R}\left( \mathbf{A}^{*} \right)}}
\, \mathbf{S}^{-2} \,
\color{blue}{\mathbf{V}_{\mathcal{R}\left( \mathbf{A}^{*} \right)}}^{*}
\right)^{-1} \\[3pt]
%
&=
%
\left(
\color{blue}{\mathbf{V}_{\mathcal{R}\left( \mathbf{A}^{*} \right)}}^{*}
\right)^{-1}
\left( \mathbf{S}^{2} \right)^{-1}
\left(
\color{blue}{\mathbf{V}_{\mathcal{R}\left( \mathbf{A}^{*} \right)}}
\right)^{-1} \\[3pt]
%
&=
%
\color{blue}{\mathbf{V}_{\mathcal{R}\left( \mathbf{A}^{*} \right)}}
\, \mathbf{S}^{-2} \,
\color{blue}{\mathbf{V}_{\mathcal{R}\left( \mathbf{A}^{*} \right)}}^{*}.
%
\end{align}
$$