Euler showed:
\begin{equation} B_{2 k} = (-1)^{k+1} \frac{2 \, (2 \, k)!}{ (2 \, \pi)^{2 k}} \zeta(2 k) \end{equation}
for $k=1,2, \cdots$. We could from here find $\zeta(2k)$ in terms of the even Bernoulli coefficients $B_{2k}$.
How can we derive the equivalent representation by using the Euler Maclaurin formula ?
Thanks.
Update
Here is what I have done:
\begin{eqnarray*} \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \quad , \quad \mathrm{Re}(s) > 1. \end{eqnarray*} Euler used the Euler-Maclaurin series to find values of the Riemann Zeta function. We want to use the Euler-Maclaurin formula with $f(x)=1/x^s=x^{-s}$. We know that
\begin{eqnarray*} f^{(0)}(x) &=& \frac{1}{x^s} \\ f^{(1)}(x) &=& -\frac{s}{x^{s+1}} \\ f^{(2)}(x) &=& \frac{s(s+1)}{x^{s+2}} \\ &\vdots& \\ f^{(i)}(x) &=& (-1)^{i+1} \frac{s(s+1) \dots (s+i-2)}{x^{s+i}} = (-1)^{i+1} \frac{\Gamma(s+i)}{ \Gamma(s)} \frac{1}{ x^{s+i}}. \end{eqnarray*}
We then write using $h=1$, $a=1$, $b=\infty$
\begin{eqnarray*} \sum_{i=1}^{\infty} \frac{1}{n^s} = \int_1^{\infty} \frac{dx}{x^s} + \frac{1}{2} + \left . \sum_{i=1}^{m} \frac{B_{2i}}{(2i)!} \frac{\Gamma(s+2 i-1)}{ \Gamma(s)} \frac{1}{ x^{s+2 i-1}} \right |_1^{\infty} + R_{2m} \end{eqnarray*} with
\begin{eqnarray*} R_{2m} = -\int_1^{\infty} \mathrm{B}_{2m} \left \{ x-1 \right \} \frac{\Gamma(s+2 m)}{(2m)! \, \Gamma(s)} \frac{dx}{x^{s+2m}}. \end{eqnarray*} That is
\begin{eqnarray} \zeta(s) = \frac{1}{s-1} + \frac{1}{2} - \sum_{i=1}^{m} \frac{B_{2i}}{(2i)!} \frac{\Gamma(s+2 i-1)}{ \Gamma(s)} + R_{2m} \label{zetazeta} \end{eqnarray}
This is an important equation since it establishes an analytic continuation for the $\zeta(s)$ function. We observe that the first fraction is an analytic function except for $s=1$, then the sum of quotients of $\Gamma$ functions is analytic except for isolated singularities in the negative integer arguments. Finally, since the Bernoulli polynomial $B_{2m}\{x-1\}$ is bounded the residual is a convergent integral for $s + 2m >1$, so we can extend the convergence as far as $s > 1-2m$, for any positive number $m$.
The question here is what "$m$" to choose. If I choose $m=1$, I did the computations and found something which made no sense.