2

@Raymond Manzoni showed nicely in this post how the Riemann zeta function is related to the Bernoulli numbers using the Euler-Maclaurin sum. The result is :

\begin{eqnarray} \zeta(1-k) = -\frac{B_k}{k}. \end{eqnarray}

(see his equation (4) ) Following a similar process but this time, instead of the Riemann Zeta function we use the Hurwitz zeta function $\zeta(s)=\sum_{n=0}^{\infty} 1/(n+x)^s$ , $\mathrm{Re}(x)>0$, we should find the extension of the equation above:

\begin{eqnarray} \zeta(1-k,x) = -\frac{B_k(x)}{k}. \end{eqnarray}

I am having difficulties with this. Any help is appreciated.

Thanks.

1 Answers1

2

I found an answer:

We will need the following easy to prove (I can expand here if necessary) relations:

\begin{eqnarray*} B_{k+1}(x) = \sum_{i=0}^{k+1} B_i \binom{k+1}{i} x^{k+1-i} \quad \quad (1), \end{eqnarray*} and

\begin{eqnarray*} \sum_{i=0}^{n-1} (i+m)^{k-1} = \frac{B_{k}(n+m) - B_{k}(m)}{k} \quad \quad (2) \end{eqnarray*}

Let us start:

\begin{eqnarray*} \sum_{k=0}^{\infty} \frac{1}{(k+x)^s} = \sum_{k=0}^{N-1} \frac{1}{(k+x)^s} + \sum_{k=N}^{\infty} \frac{1}{(k+x)^s} \end{eqnarray*} and, in the second sum, use the Euler-Maclaurin series with $h=1, a=N, n= \infty$, $f(k)=1/(k+x)^s$. Then

\begin{eqnarray*} \sum_{i=0}^{n-1} f(a + i h) h = \int_a^b f(t) dt + \left . \sum_{k=1}^{m} \frac{B_k h^k}{k!} f^{(k-1)} (t) \right |_a^b + R_m \\ \sum_{i=0}^{\infty} \frac 1{(N + i+x)^s} = \int_{N}^{\infty} \frac {dt}{(t+x)^s} + \left . \sum_{k=1}^{m} \frac{B_k}{k!} (-1)^{k-1}\frac{\Gamma(s+k-1)}{\Gamma(s) (t+x)^{s+k-1}} \right |_{N}^{\infty}+ R_m\\ \sum_{k={N}}^{\infty} \frac 1{(k+x)^s} = \frac {1}{(s-1)(N+x)^{s-1}} - \sum_{k=1}^{m} \frac{B_k}{k!} (-1)^{k-1}\frac{\Gamma(s+k-1)}{\Gamma(s) \, (N+x)^{s+k-1}}+ R_m \end{eqnarray*} with

\begin{eqnarray*} R_m = \int_N^{\infty} B_m \left \{ \frac{t-a}{h} \right \} \frac{\Gamma(s+m)}{ \Gamma(s)} \frac{1}{ (t+x)^{s+m+1}}. \end{eqnarray*}

Then

\begin{eqnarray*} \zeta(s,x)= \sum_{k=0}^{N-1} \frac 1{(k+x)^s} + \frac {1}{(s-1)\,(N+x)^{s-1}} - \sum_{k=1}^{m} \frac{B_k}{k!} \frac{\Gamma(s+k-1)}{\Gamma(s) (N+x)^{s+k-1}}+ R_m, \end{eqnarray*} and taking the limit as $m \to \infty$ (since the sum converges and $R_m \to 0$, this is easy to show for this function), we find

\begin{eqnarray*} \zeta(s,x) = \sum_{k=0}^{N-1} \frac{1}{(k+x)^s} + \frac{1}{ (s-1) (N+x)^{s-1}} + \sum_{k=1}^{\infty} \frac{B_k }{k!} \frac{\Gamma(s+k-1)}{\Gamma(s)}. \end{eqnarray*}

We want to choose $s=1-j$, for $j$ a positive integer. First, we consider the Pochhammer Symbold

\begin{eqnarray*} (s)_{k-1} = \frac{ \Gamma(s + k -1)}{\Gamma(s)}. \end{eqnarray*} We prove the reflection formula for the Pochhammer symbol,

\begin{eqnarray*} (-t)_n = (-1)^n (t -n + 1)_n \end{eqnarray*}

This is,

\begin{eqnarray*} (-t)_n &=& \frac{ \Gamma(-t+n)}{\Gamma(-t)} \\ &=& \frac{ (-t+n-1)(-t+n-2) \cdots (-t) \cancel{\Gamma(-t)}}{\cancel{\Gamma(-t)}} \\ &=& (-1)^n (t-n+1)(t-n+2) \cdots t \\ &=& (-1)^n t (t-1) \cdots (t-n+1) \\ &=& (-1)^n \frac{\Gamma(t+1)}{\Gamma(t-n+1)} \\ &=& (-1)^n (t-n+1)_n \end{eqnarray*}

Then we find that for $s=1-j$

\begin{eqnarray*} \frac{\Gamma(s+k-1)}{k! \; \Gamma(s)} = \frac{(1-j)_{k-1}}{k!} = (-1)^{k-1} \frac{(j-1-k+1 +1)_{k-1}}{k!} = (-1)^{k-1} \frac{ (j-k+1)_{k-1}}{k!} = (-1)^{k-1} \frac{ (j-1)!}{k! \, \Gamma(j-k)} \end{eqnarray*}

and we can write the formula for $\zeta(1-j,x)$ as

\begin{eqnarray*} \zeta(1-j,x) &=& \sum_{k=0}^{N-1} (k+x)^{j-1} - \frac{ (N+x)^j}{j} + \frac{1}{j} \sum_{k=1}^j (-1)^{k-1} B_k \; (N+x)^{j-k} \binom{j}{k} . \\ &=& \sum_{k=0}^{N-1} (k+x)^{j-1} - \frac{1}{j} \sum_{k=0}^j (-1)^{k} B_k \; (N+x)^{j-k} \binom{j}{k} . \end{eqnarray*} where we introduced the independent term into the second sum. We will change the alternating sign $(-1)^{k-1}$ for a $-1$ sign, since for $k > 1$, odd $B_{k}=0$, and the first two terms (indices $k=0,1$) have the right sign.

We recognize, from equation (1), into the equation above that \begin{eqnarray*} \zeta(1-j,x) = \sum_{k=0}^{N-1} (k+x)^{j-1} - \frac{1}{j} \, B_{j}(N+x). \end{eqnarray*} where we removed the alternating sign $(-1)^{k-1}$ since for $i>1$ odd $B_k=0$.

We now use equation (2) to write

\begin{eqnarray*} \zeta(1-j,x) = \frac{B_{j}(N+x) - B_{j}(x)}{j} - \frac{1}{j} \, B_{j}(N+x) = -\frac{B_j(x)}{j}. \end{eqnarray*}

This is what we wanted to show.