Find all positive integers solutions for the following diophantine equation $$x^2-xy-y^2=1$$
My work so far
1)$$x^2-xy-y^2-1=0$$ $$D=y^2+4(y^2+1)=5y^2+4=k^2, k \in \mathbb Z$$ 2)$$ y^2+xy-x^2+1=0$$ $$D=x^2+4x^2-4=5x^2-4=m^2, m\in \mathbb Z$$
Find all positive integers solutions for the following diophantine equation $$x^2-xy-y^2=1$$
My work so far
1)$$x^2-xy-y^2-1=0$$ $$D=y^2+4(y^2+1)=5y^2+4=k^2, k \in \mathbb Z$$ 2)$$ y^2+xy-x^2+1=0$$ $$D=x^2+4x^2-4=5x^2-4=m^2, m\in \mathbb Z$$
You reached $k^2-5y^2=4$. To proceed from here, you need the theory of Pell equations. One way is to consider the LHS which has a factorization in $\mathbb Z[\sqrt5]$.
In $\mathbb Z[\sqrt5]$, the norm is $N[a+b\sqrt5] = a^2-5b^2$, so we are actually seeking elements s.t. $N[z]=4$. Clearly $z_0=3+\sqrt5$ is a solution, but there are infinite units satisfying $N[u]=1$, so there are a lot more solutions of form $z_0 u^n$.
Case 1: $z_0 = 3+\sqrt5, u=9\pm\sqrt5$
Here $z_n = (3+\sqrt5)(2+\sqrt5)^{2n}=(3+\sqrt5)(9\pm 4\sqrt5)^n$ is always a solution for $(k, \pm y)$.
Case 2: $z_0 = 2, u=9+4 \sqrt5$
Here again $z_n =2(9+ 4\sqrt5)^n$ generates solutions for $(k, y)$.
The first few solutions using Case 1 positive branch is $(x, y) = (2, 1), (34, 21), (610, 377), (10946, 6765), (196418, 121393)...$.
Case 1 negative branch is $(5, 3), (89, 55), (1597, 987), ...$
Similarly from Case 2 we have: $(13,8), (233,144), (4181, 2584), ...$
P.S. If you prefer the recursion, it is $f(n+2)=18f(n+1)-f(n)$, for both $x_n, y_n$, ...
or a simpler one can be observed from the pattern - all Fibonacci numbers are covered in the form $(y_1, x_1, y_2, x_2, y_3, x_3, ...) = (1, 2, 3, 5, 8, 13, ...)$..
I wrote a recent program to do this:
jagy@phobeusjunior:~$ ./Pell_Target_Fundamental_A
2 1
1 1
3^2 - 5 1^2 = 4
1 x^2 + -1 x y -1 y^2 = 1
Fri Apr 29 10:40:50 PDT 2016
x: 2 y: 1 ratio: 2 seed
x: 5 y: 3 ratio: 1.666666666666667
x: 13 y: 8 ratio: 1.625
x: 34 y: 21 ratio: 1.619047619047619
x: 89 y: 55 ratio: 1.618181818181818
x: 233 y: 144 ratio: 1.618055555555555
x: 610 y: 377 ratio: 1.618037135278515
x: 1597 y: 987 ratio: 1.618034447821682
x: 4181 y: 2584 ratio: 1.618034055727554
x: 10946 y: 6765 ratio: 1.618033998521803
x: 28657 y: 17711 ratio: 1.618033990175597
x: 75025 y: 46368 ratio: 1.618033988957902
x: 196418 y: 121393 ratio: 1.618033988780243
x: 514229 y: 317811 ratio: 1.618033988754322
x: 1346269 y: 832040 ratio: 1.618033988750541
x: 3524578 y: 2178309 ratio: 1.618033988749989
x: 9227465 y: 5702887 ratio: 1.618033988749908
Fri Apr 29 10:41:10 PDT 2016
2 1
1 1
Inverse of given automorphism of quadratic form:
1 -1
-1 2
jagy@phobeusjunior:~$
As you can see, the $x$ values are the odd index Fibonacci numbers, and the $y$ values are the even index Fibonaccis. The formal way to get from one solution $(x,y)$ to the next larger is $$ (x,y) \mapsto (2x+y, x+y). $$ As the determinant of the automorphism matrix is $1$ and the trace $3,$ we use Cayley-Hamilton to get separate $$ x_{n+2} = 3 x_{n+1} - x_n, $$ $$ y_{n+2} = 3 y_{n+1} - y_n. $$
The same information is contained and explained in Conway's Topograph diagram for this quadratic for $x^2 - xy- y^2.$ I drew this picture for my answer at Solve the following equation for x and y: where it was used for $x^2 - xy - y^2 = 5.$ In today's problem we found $x^2 - xy - y^2 = 1.$