22

Numerically it seems to be true that

$$ \int_0^\infty \frac{\sin x}{\sqrt{x}}dx=\sqrt{\frac{\pi}{2}}. $$

Any ideas how to prove this?

user91500
  • 5,606
Kai
  • 221

8 Answers8

20

Using contour integration, we get $$ \begin{align} \int_0^\infty\frac{e^{ix}}{\sqrt{x}}\,\mathrm{d}x &=\sqrt{i\,}\int_0^\infty\frac{e^{-x}}{\sqrt{x}}\,\mathrm{d}x\\ &=\frac{1+i}{\sqrt{2}}\Gamma\left(\frac12\right)\\ &=(1+i)\sqrt{\frac\pi2} \end{align} $$ Therefore, $$ \int_0^\infty\frac{\cos(x)}{\sqrt{x}}\,\mathrm{d}x=\int_0^\infty\frac{\sin(x)}{\sqrt{x}}\,\mathrm{d}x=\sqrt{\frac\pi2} $$


About the Contour Integration

If we integrate $f(z)=\dfrac{e^{iz}}{\sqrt{z}}$ around the contour $[0,R]\cup Re^{i[0,\pi/2]}\cup i[R,0]$ as $R\to\infty$, we get that $$ \int_0^R\frac{e^{ix}}{\sqrt{x}}\,\mathrm{d}x +\int_0^{\pi/2}\frac{e^{iRe^{ix}}}{\sqrt{R}e^{ix/2}}iRe^{ix}\,\mathrm{d}x -\sqrt{i\,}\int_0^R\frac{e^{-x}}{\sqrt{x}}\,\mathrm{d}x =0 $$ because there are no singularities of $f$ inside the contour. Then because $$ \begin{align} \left|\int_0^{\pi/2}\frac{e^{iRe^{ix}}}{\sqrt{R}e^{ix/2}}iRe^{ix}\,\mathrm{d}x\right| &\le\sqrt{R}\int_0^{\pi/2}e^{-R\sin(x)}\,\mathrm{d}x\\ &\le\sqrt{R}\int_0^{\pi/2}e^{-2Rx/\pi}\,\mathrm{d}x\\ &\le\frac\pi{2\sqrt{R}} \end{align} $$ vanishes as $R\to\infty$, we have $$ \int_0^\infty\frac{e^{ix}}{\sqrt{x}}\,\mathrm{d}x =\sqrt{i\,}\int_0^\infty\frac{e^{-x}}{\sqrt{x}}\,\mathrm{d}x $$


Real Method

Substituting $u^2=x$ and applying this answer, which uses only real methods, yields $$ \begin{align} \int_0^\infty\frac{\sin(x)}{\sqrt{x}}\,\mathrm{d}x &=2\int_0^\infty\sin(u^2)\,\mathrm{d}u\\ &=2\sqrt{\frac\pi8}\\ &=\sqrt{\frac\pi2} \end{align} $$

robjohn
  • 345,667
  • would the downvoter care to comment? – robjohn Apr 06 '14 at 09:41
  • I guess you take a half-circle as contour, I can't get your first equality with $\sqrt i$, could you expand please? – caub Jun 20 '14 at 23:10
  • @kwak: I have added a section about the contour integration mentioned. – robjohn Jun 21 '14 at 01:01
  • Why the second downvote? – robjohn Jun 21 '14 at 01:14
  • Thanks, awesome answer, the trick is to take this quarter circle – caub Jun 21 '14 at 09:11
  • How about after sub $u=\sqrt{x}$, we evaluate $$ 2\int_0^\infty \sin u^2\ du=2\ \Re\left[\int_0^\infty e^{-iu^2}\ du\right] $$ using Gaussian integral and get $\Re\left[\sqrt{\dfrac{\pi}{i}}\right]=\sqrt{\dfrac{\pi}{2}}$? Is that approach correct? – Tunk-Fey Jun 21 '14 at 15:34
  • @Tunk-Fey: With a change of variables, that is precisely what I wrote above. However, the integrals are over two different paths and to show that they are equal, we have to use contour integration. – robjohn Jun 21 '14 at 17:22
  • Truth be told, I know nothing about contour integration I never did learn that subject. I tried to justify my approach by using $\Re\left[\sqrt{\dfrac1i}\right]=\dfrac1{\sqrt{2}}$. it seems to me it's correct, my Prof in Physics also felt OK with that but I wonder how does this approach matter in mathematician's viewpoint? – Tunk-Fey Jun 22 '14 at 09:19
  • @Tunk-Fey contour integration comes with the study of holomorphic functions (functions continuous in $\Bbb C$) – caub Jun 27 '14 at 18:44
12

That is a Fresnel integral.

Make the substitution $\sqrt{x}=u$. Then you get $dx=2udu$ from where

$$\int_0^\infty \sin(x) x^{-1/2} dx =2 \int_0^\infty \sin(u^2)du=2\sqrt{\frac{\pi}{8}}=\sqrt{\frac{\pi}{2}}$$

See this question for more details.

Pedro
  • 122,002
11

Here is an another approach, which I show only a heuristic calculation:

$$\begin{align*} \int_{0}^{\infty} \frac{\sin x}{\sqrt{x}} \; dx &= \int_{0}^{\infty} \left( \frac{1}{\Gamma\left(\frac{1}{2}\right)} \int_{0}^{\infty} t^{-1/2} e^{-xt} \; dt \right) \sin x \; dx \\ &\stackrel{\ast}{=} \frac{1}{\Gamma\left(\frac{1}{2}\right)} \int_{0}^{\infty} t^{-1/2} \int_{0}^{\infty} e^{-xt} \sin x \; dx \; dt \\ &= \frac{1}{\Gamma\left(\frac{1}{2}\right)} \int_{0}^{\infty} \frac{t^{-1/2}}{1+t^2} \; dt \\ &= \frac{1}{\Gamma\left(\frac{1}{2}\right)} \int_{0}^{\infty} \frac{2du}{1+u^4}.\qquad(t = u^2) \end{align*}$$

Now it is not hard to show that

$$ \int_{0}^{\infty} \frac{2du}{1+u^4} = \frac{\pi}{\sqrt{2}}.$$

Indeed, you may use the equality

$$ \begin{align*} \frac{2 du}{1+u^4} &= \frac{2u^{-2} \; du}{u^2 + u^{-2}} = \frac{1 + u^{-2} \; du}{u^2 + u^{-2}} - \frac{1 - u^{-2} \; du}{u^2 + u^{-2}}\\ &= \frac{d\left(u - u^{-1}\right)}{\left(u - u^{-1}\right)^2 + 2} - \frac{d\left(u + u^{-1}\right)}{\left(u + u^{-1}\right)^2 - 2} \end{align*}$$

and hence deduce that

$$ \begin{align*} \int_{0}^{\infty} \frac{2 du}{1+u^4} &= \int_{0}^{\infty} \frac{d\left(u - u^{-1}\right)}{\left(u - u^{-1}\right)^2 + 2} - \int_{0}^{\infty} \frac{d\left(u + u^{-1}\right)}{\left(u + u^{-1}\right)^2 - 2}\\ &= \int_{-\infty}^{\infty} \frac{dv}{v^2 + 2} - \color{blue}{\int_{\infty}^{\infty} \frac{dw}{w^2 - 2}} \qquad \begin{pmatrix}v = u - u^{-1} \\ w = u + u^{-1}\end{pmatrix}\\ &= \frac{\pi}{\sqrt{2}} + 0. \end{align*}$$

as claimed, where the blue-colored integration is taken along the curve starting from $+\infty$ to $2$, and then turning back to $+\infty$, which makes it cancel out. Therefore we obtain the desired result.

The problem in this calculation is that the starred equality is almost unable to be justified by any simple means.

Sangchul Lee
  • 167,468
8

From the result

$$ \int_0^\infty dx \frac{\sin x}{\sqrt x} = 2 \int_0^\infty dx \sin\left(x^2\right), $$

I'd use $\exp\left(-i x^2\right) = \cos \left(x^2\right) - i \sin \left(x^2\right)$ and

$$ \int_0^\infty dx \ \exp\left(- a x^2\right) = \frac{1}{2} \sqrt{\frac{\pi}{a}}. $$

Eric Angle
  • 1,837
6

Let's start out with the following relation: $$\int_0^{\infty} \frac{\sin x}{\sqrt{x}} e^{-a x} dx = \frac{2}{\sqrt{\pi}} \int_0^{\infty} \frac{1}{1+(a+x^2)^2} dx \tag1$$ Proof of the relation $(1)$

$$\int_0^{\infty} \frac{\sin x}{\sqrt{x}} e^{-a x} dx=$$ Notice that $\displaystyle \frac{1}{\sqrt x}= \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-xt^2} dt$ and have that

$$\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \sin x e^{-ax}\left(\int_{0}^{\infty} e^{-xt^2} dt\right) dx=$$ $$\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \left(\int_{0}^{\infty}\sin x e^{-(a+t^2)x} dt\right) dx=$$ Change the integration order $$\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \left(\int_{0}^{\infty}\sin x e^{-(a+t^2)x} dx\right) dt=$$ Now let's recollect the formula $$ \int e^{\alpha x} \sin (\beta x) \ dx = \frac{e^{\alpha x}(-\beta (\cos (\beta x) + \alpha \sin(\beta x)))}{{\alpha}^2+{\beta}^2}$$

Hence $$\int_{0}^{\infty}\sin x e^{-(a+t^2)x} dx=-\frac{e^{-(a+t^2)x}((a+t^2)\sin x + \cos x)}{1+(a+t^2)^2}\bigg|_{0}^{\infty}=\frac{1}{1+(a+t^2)^2}$$ Then $$\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \left(\int_{0}^{\infty}\sin x e^{-(a+t^2)x} dx\right) dt=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty}\frac{1}{1+(a+t^2)^2} \ dt.$$ End of the relation $(1)$ proof.

Based upon the above relation we get that $$\int_0^{\infty} \frac{\sin x}{\sqrt{x}} dx=$$ $$ \lim_{a\to0+} \int_0^{\infty} \frac{\sin x}{\sqrt{x}} e^{-a x} dx =$$ $$ \lim_{a\to0+} \frac{2}{\sqrt{\pi}} \int_0^{\infty} \frac{1}{1+(a+x^2)^2} dx=$$ $$\frac{2}{\sqrt{\pi}} \int_0^{\infty} \frac{1}{1+x^4} dx \tag2$$ For the last integral we may change the variable and everything gets reduced to computing beta function

Change the variable $$x=\left(\frac{t}{1-t}\right)^{\frac{1}{4}}$$ Then $$\int_0^\infty \frac{1}{1+x^4} \ dx = \int_0^1 \frac{1}{4} (1-t)^{\frac{3}{4}-1} t^{\frac{1}{4}-1} \mathrm{d} t = \frac{1}{4} \operatorname{B}\left(\frac{1}{4}, \frac{3}{4}\right) = \frac{1}{4} \sqrt{2} \pi \tag3$$

Finally, from $(2)$ and $(3)$ we obtain the desired result

$$\int_0^\infty \frac{\sin x}{\sqrt{x}}dx=\sqrt{\frac{\pi}{2}}.$$ Q.E.D.

user 1591719
  • 44,216
  • 12
  • 105
  • 255
0

The great solution using the integration contour leads to an extended result (not only for $s=1/2$): $$\int\limits_0^\infty x^{s-1} \sin x \,\mathrm{d}x = \Gamma(s)\sin\frac{s\pi}2 \quad (s\in\mathbb{R}; 0<s<1)$$ If we integrate $f(z)=z^{s-1}e^{iz}$ around the contour $[0,R]\cup R e^{i[0,\pi/2]}\cup i[R,0]$ as $R\to\infty$, and because there are no singularities of $f$ inside the contour, the Cauchy theorem gives: $$\int\limits_0^R x^{s-1} e^{ix} \,\mathrm{d} x + \int\limits_0^{\pi/2} \underbrace{R^{s-1} e^{i\theta(s-1)} e^{iRe^{i\theta}} Ri}_{g(R,\theta)} \,\mathrm{d} \theta - i^s \int\limits_0^R y^{s-1} e^{-y} \,\mathrm{d} y =0.$$ The second term vanishes as $R\to\infty$ since \begin{align*} \left| \int_0^{\pi/2} g(R,\theta) \,\mathrm{d}\theta \right| & \le \int_0^{\pi/2} \left| g(R,\theta)\right| \,\mathrm{d}\theta \\ & \le R^s \int_0^{\pi/2} e^{-R\sin\theta} \,\mathrm{d}\theta \le R^s \int_0^{\pi/2} e^{-2R\theta/\pi} \,\mathrm{d} \theta \\ & \le R^{s-1} \frac{\pi}2 \quad \to \quad 0. \end{align*} so we have $$\int\limits_0^\infty x^{s-1} e^{ix} \,\mathrm{d} x = e^{is\pi/2} \ \Gamma(s),$$ which imaginary part is the result.

0

The people who are contour integrating need to account for the branch point that occurs at x = 0. The quarter circle works fine, but you need to indent the contour around z = 0.

$\oint_{C}= \oint_{C_{1}}+\oint_{C_{2}}+\oint_{C_{3}}+\oint_{C_{4}}$

$C_{1}:z=x ,z \in[\epsilon,R]$

$C_{2}:z=Re^{i\theta} ,\theta \in[0,\frac{\pi}{2}]$

$C_{3}:z=iy ,\theta \in[R,\epsilon]$

$C_{4}:z=\epsilon e^{i\theta} ,\theta \in[\frac{\pi}{2},0]$

You need to estimate the fourth integral to be zero, which isn't nontrivial.

$\oint_{C_{4}}\frac{exp(iz)}{\sqrt{z}}= -i\int_0^\frac{\pi}{2}\frac{e^{i\epsilon e^{i\theta}}}{\sqrt{\epsilon e^{i\theta}}}\epsilon e^{i \theta}d\theta$

$-i\int_0^\frac{\pi}{2}e^{i\epsilon e^{i\theta}}\sqrt{\epsilon} e^{\frac{i\theta}{2}} d\theta$

You can expand the main exponential in power series about $\epsilon = 0$

$-i\int_0^\frac{\pi}{2}\sqrt{\epsilon}\bigg(1+O(\epsilon)\bigg)e^{\frac{i\theta}{2}}d\theta$

You will be integrating a function that is power series in $\epsilon$ and $e^{i\theta}$, a term by term integration over those will lead to integrals that converge. You can then take the limit as $\epsilon \longrightarrow 0$, which shows that the fourth integral equals zero.

0

Here I use Laplace Transform to present a simple proof and do not need use other tools. Note that $$ \int_0^\infty e^{-xt}\frac{1}{\sqrt{\pi t}}dt=\frac{1}{\sqrt x} $$ and hence \begin{eqnarray} \int_0^\infty\frac{\sin x}{\sqrt x}dx&=&\int_0^\infty\sin x\left(\int_0^\infty e^{-xt}\frac{1}{\sqrt{\pi t}}dt\right)dx\\ &=&\frac{1}{\sqrt\pi}\int_0^\infty \left(\int_0^\infty e^{-xt}\sin xdx\right) \frac{1}{\sqrt{t}}dt\\ &=&\frac{1}{\sqrt\pi}\int_0^\infty \frac{1}{t^2+1} \frac{1}{\sqrt{t}}dt\\ &=&\frac{1}{\sqrt\pi}\int_0^\infty \frac{\sqrt t}{t^2+1}dt\\ &=&\frac{1}{\sqrt\pi}\frac{\pi}{\sqrt 2}\\ &=&\sqrt{\frac{\pi}{2}}. \end{eqnarray} Here we use the following well-known integral $$ \int_0^\infty \frac{t^p}{t^2+1}dt=\frac{\pi}{2\cos\frac{p\pi}{2}}, |p|<1. $$

xpaul
  • 44,000