The original problem is $\int_{0}^{\infty}{e^{itx}x^{\alpha-1}e^{-x/\lambda}}dx$
My work:
$\int_{0}^{\infty}{\cos(tx)x^{\alpha-1}e^{-x/\lambda}}dx=-\lambda\int_{0}^{\infty}{\cos(tx)x^{\alpha-1}de^{-x/\lambda}}=-\lambda t\int_{0}^{\infty} {\sin(tx)x^{\alpha-1}e^{-x/\lambda}}dx+\lambda (\alpha-1)^2\int_{0}^{\infty}{\cos(tx)x^{\alpha-2}e^{-x/\lambda}}dx.$
Changed Can I solve it this way? Let $y=x(1/\lambda-it)$. Solve this $\int_{0}^{\infty}{e^{itx}x^{\alpha-1}e^{-x/\lambda}}dx$. My concern is when $x=\infty$, is $y$ also infinity?
I do not how to continue.